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Motivation

> In many applications, the Gaussian distribution is not a good model to describe the
underlying physics

> Radar clutter,
> |nterference in indoor and outdoor mobile communication channels,

> noise in imaging problems.

> Some observations, referred to as outliers, might present an atypical behaviour.

» A few number of outliers can impact severely the performances of traditional signal
processing methods,

= It is of fundamental interest to develop robust signal
processing methods
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Complex elliptically symmetric (CES) distributions

» Form a natural extension of the complex normal distribution by allowing heavier or lighter
tails than the complex normal distribution

> Many results for the complex normal distribution carry over to this broader class.

v

Present better accuracy in modeling impulsive noises

Are tractable and thus can be used to derive robust estimates from the maximum likelihood
principle.

v



Complex elliptically symmetric (CES) distributions

Stochastic representation

> The basic block for constructing a random variable following a CES distribution is the
standard normal distribution.

z ~ CN(0,1p) JJ_ T (scalar)

X—\/>><C2 7'

> T is a scalar used to model the impulsive behaviour of the noise,

> has a uniform distribution over the sphere,

HZH
[T 1 z
x=4/=%x(cCp)2 X —
c |z]|

— This representation is not unique
» Matrix C,, is called the scatter matrix. To remove scalar ambiguity, the scatter matrix is
selected such that trC, = p.



Complex elliptically symmetric (CES) distributions

Definition
A continuous symmetric random vector x € CP has a centered complex elliptically symmetric
(CES) distribution if its p.d.f is of the form:

F(x) = Cpg (det(Cp)’:L) g(x"C;1x) *)

where C, is positive definite hermitian matrix, called the scatter matrix, g : Rt — R called the

density generator and
Cog = 2(5pépvg)71

with 8,6 = [o° tP1g(t)dt and s, = 27tP/T'(p). We write that
x~ CES(Cp, g) (1)

Link between two representations of CES random variables

> Consider T with pdf f(t) = tP1g(t)5,L.

1
= Then, x=/71C} ﬁ is a CES with pdf f(x) given in (¥*).



Examples of CES distributions

» Gaussian distribution: L
x=Gam(p,1) x C32 e

» Compound Gaussian distribution: sub-family of CES distributions

z~ CN(0,1,) JJ_ T (scalar)

1
x=+TxC3 xz

1 1 2
Stochastic compound Gaussian representation x = v/t C2 x z = y/7||z||2 x C2 E
> T > 0 is called the texture and is independent of z,

> z is called the speckle.



Compound Gaussian distribution

» Probability density function of Compound Gaussian distribution. If rank(Cy ) = p, the
density exists and is given by:

(o]
f(x) = n_Pdet(Cﬁl)J T Pexp (—XHCKIIX/T) fr(T)dT
0
— The density generator associated with x is given by:

glt) = J: TP exp(— L) ()T

> Most illustrative examples:

Distribution Pdf heavier tail
K-distribution X = \/Gam(v, v1) xz Tail heavy when v 7
Complex t-distribution X = \/W X z | Tail heavy when v Y\
Generalized Gaussian distribution x=Gam(2,b) xz Tail heavy when s
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Maximum Likelihood estimators



Maximum Likelihood estimator (MLE) for the scatter

> Problem statement: Given p-dimensional random vectors x1, - - - , x, drawn from elliptical
distribution with density generator g and scatter matrix Cp.

Objective: estimate the scatter matrix Cp J

» Traditional estimator is the sample covariance matrix:
1 n

s H

Sp = - Z XX}
i=1

Its popularity owes to:

> Simplicity,
n — oo and p fixed
n,p— oo with2 — c.
> |s the MLE estimator when observations are drawn from Gaussian distribution

> Existing of a good understanding of its behaviour in the regimes :{

The traditional estimator is not MLE when observations are not Gaussian.



Maximum Likelihood estimator (MLE) for the scatter

» Given xq,--+ ,X, € CP

> independent and identically distributed
> centered
> x; ~ CES(C,, g) with pdf f(x).

> The Likelihood is given by:

H fx;) oc (det(C,1) " TT g (xC,tx)

— The negative log-likelihood function

n
#(Cp)x Y —logg <x,.”c;1x,-) + nlogdet(Cp)
i=1

> The MLE estimator is given by:

C,= argmin £,(Cp)
CpeCP
definite positive




Maximum Likelihood estimator (MLE) for the scatter

> Gaussian case
> X1, X, ~ CN(0,C;) = x1,---,%x, ~ CES(Cp, exp(—t))
> Density generator is g(t) = exp(—t) = @ (t) = exp(—t)/exp(—t) =1.

= 1<

H

= C,= E'le,-x,-
i=

» CES case:

Natural questions:
> Existence,
> Uniqueness,
» Numerical evaluation
> Asymptotic behaviour

u]
o)
I
i
it




Examples of Maximum likelihood estimators

» Complex t-distribution Ctp v

n

= 2p+v
HE-1 H P
(] (Xi o Xi) XiX;, = v rot

Cn=

S

i=1

> Generalized Gaussian distribution CGGp s

n

1 ~_ S
Cn:;Z([J(X,HCan,')X,'X,H, cp:Ets L
i=1

> Central Angular Gaussian distribution CAG, (Cyp )

~ 1 ~
Co=2) o (x'Cx)xxt,  o(t)=2
i=1
il & X f"
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M-estimators of scatters



M-estimator of scatter matrix

> M-estimators of scatter are generalizations of the ML-estimators of the scatter matrix.
> They can be defined by allowing a general function u in place of ¢ not necessarily related to

any elliptical density g,
» Motivation behind the M-estimator: the probability density function might not be known.

n i=1
SCM Huber Tyler
u(x) =1 u(x) ={ ﬁ;i :Ziz u(x) =&
u(x) u(x) U(X)




M-estimators of scatter matrix

> Real-valued case: 1976-1991

> Provide necessary and sufficient conditions for the existence and uniqueness of M-estimators
> Extensively studied under the regime n — oo and p fixed.
> R. A. Maronna, “Robust M-estimators of multivariate location and scatter”, 1976.
P.J. Huber, “Robust Statistics”, 1981.
D. E. Tyler. " A Distribution-Free M-estimator of Multivariate Scatter”, The Annals of Statistics, 1987
J. T. Kent, D. E. Tyler, “Redescending M-estimates of multivariate location and scatter”, 1991.
J. T. Kent, D. E. Tyler, "Maximum likelihood estimation for the wrapped Cauchy distribution”, 1988
» D. E. Tyler, "Radial estimates and the test for sphericity, Biometrika 1982
> Generalized to the complex-case mainly in the engineering literature. 2003-Present
> Provide necessary and sufficient conditions for the existence and uniqueness of M-estimators
> Studied under the regime n — oo and p fixed.
»> E. Ollila and V. Koivunen "Robust antenna array processing using M-estimators of pseudo-covariance”, 2003
» E. Ollila and V. Koivunen "Influence function and asymptotic efficiency of scatter matrix based array
processors: Case MVDR beamformer”, 2009
» F. Pascal, P. Forster, J.-P. Ovarlez and P. Larzabal " Performance analysis of covariance matrix estimates in
impulsive noise”, 2008
» M. Mahot, F. Pascal, P. Forster and J.-P. Ovarlez " Asymptotic properties of robust complex covariance matrix

estimates” 2013
» Y. Chitour, R. Couillet and F. Pascal "On the convergence of Maronna's M-estimators of scatter”, 2015

» Studied under the regime n, p — co 2013-Present
> R. Couillet, F. Pascal and J. W. Silverstein " The Random Matrix Regime of Maronna’'s M-estimator
with elliptically distributed samples” Journal of Multivariate Analysis, 2013

YyvyYvyYyY



M-estimators of scatter matrix: Existence and uniqueness

> Assumptions
> Let xy,---,x, €CP

X — u(x) is non-negative, continuous and non-increasing,
Consider x — ¢ (x) = xu(x) strictly increasing.
Let K =sup,>q ¢ (s), then p < K.
There exists a > 0 such that for any hyperplane S satisfying dim(S) < p— 1, we have
#3ES) 1 _ b _,

n = K .

yvyyvyy

> M-estimator of scatter: Then, the solution of the following equation in C,

exists and is unique.

> Numerical evaluation: Moreover, given any initial estimate X hermitian and positive
definite, the following sequence (X, ) defined as:

To=2X

1 _
T = n Z U(Xﬁzk 1Xi)xixﬁ

converges to C,.



E. Ollila,

M-estimators of scatter matrix: Asymptotic convergence

D. E. Tyler, V. Koivunen and H. V. Poor " Complex elliptically symmetric distributions:

Survey, new results and applications” |IEEE Transactions on Signal Processing, 2012

> Assumptions

| 4

yvyyvyy

| 4

Let x3,---,x, € CP ~ CES(C,, g)

X — u(x) is non-negative, continuous and non-increasing,
Consider x — ¢ (x) = xu(x) strictly increasing.

Let K =sup,>q ¢ (s), then p < K.

There exists a > 0 such that for any hyperplane S satisfying dim(S) < p— 1, we have
#ES) 1 b,
n X K b .
Asymptotic regime: n — oo with p fixed.

» Convergence of the M-estimator of scatter: Let C4 be the solution of the following

equation:
Cy =E u(chglx]xxH}
Then, R
Cn = C¢
Moreover,
C¢ = O'Cp

with o being the unique solution to E; [ ()] = p.



M-estimators of scatter matrix: Heuristic arguments
> Recall that the robust estimator is solution to:

= 1 & =
Cp= ” E u(x;f"C,, Ix;)x;xH
i=1

i

N



M-estimators of scatter matrix: Heuristic arguments
> Recall that the robust estimator is solution to:

= 1< =
C,= = Zlu(ch e
P

» Since p is assumed fixed, E,, can be considered as close to a deterministic matrix Cg4,. By the
strong law of large numbers, we expect that:

n

1 n
He—1
5 E u(x; Crix;)xix;m ~ =
i=1

Zu(xﬁC@lxi)x,—x,H~]E u(x""’C;1 )xx!
i=1




M-estimators of scatter matrix: Heuristic arguments
> Recall that the robust estimator is solution to:

¢ 1y He—1 H

Ch,= 5 Z u(x;"C, "x;)x;x
i=1

» Since p is assumed fixed, E,, can be considered as close to a deterministic matrix Cg4,. By the

strong law of large numbers, we expect that:

n

1 n
He—1
- E u(x; Crix;)xix;m ~ =
i=1

Z u(xﬁc;lx,-)x,-x,H ~E {u(x""'C$1 )xx!
i=1
— Matrix Cg should thus satisfy:

Cy =E {u(xHC?x]xxH]




M-estimators of scatter matrix: Heuristic arguments

> Recall that the robust estimator is solution to:

- 1 .
Cy= 5 Zl u(xHCn Ix;)x;xH
=

» Since p is assumed fixed, é,, can be considered as close to a deterministic matrix Cg4,. By the
strong law of large numbers, we expect that:

1 ¢ o 1¢ _ _
- Z u(x,HC,7 lx,-)x,-x;H - Z u(xf"C(blx,-)x,-x,I-'l ~E {u(xHCdJlx)xxH
i=1 i=1

— Matrix Cg should thus satisfy:

Cy =E {u(xHC?x]xxH]

» Now, multiplying both sides by C;!, we obtain:

Ip = E [u(xHCylx)xxtC ]



M-estimators of scatter matrix: Heuristic arguments

> Recall that the robust estimator is solution to:

- 1 .
Cy= E,ZIU(XHC" Ix;)x;xH
=

» Since p is assumed fixed, é,, can be considered as close to a deterministic matrix Cg4,. By the
strong law of large numbers, we expect that:

1 ¢ o 1¢ _ _
- Z u(x,HCn lx,-)x,-x;H - Z u(xf"C(blx,-)x,-x,I-'l ~E {u(xHCdJlx)xxH
i=1 i=1

— Matrix Cg should thus satisfy:

Cy =E {u(xHC?x]xxH]

» Now, multiplying both sides by C;!, we obtain:

Ip = E [u(xHCylx)xxtC ]

» Taking the trace and replacing C4 by oCp, we finally obtain:

p—E u(ch;lx)ch;lx] —E [q;(ch;lx)] —E [q;(l)]



M-estimators of scatter matrix: Fluctuations

M. Mahot, F. Pascal, P. Forster and J.-P, Ovarlez " Asymptotic Properties of Robust Complex
Covariance Matrix Estimates” |IEEE Transactions on Signal Processing, vol. 61, no 13, 2013.

> Assumptions
> Letxi,---,x, € CP ~ CES(Cp, g)
X — u(x) is non-negative, continuous and non-increasing,
Consider x — ¢ (x) = xu(x) strictly increasing.
Let K =sups>q ¢ (s), then p < K.
There exists a > 0 such that for any hyperplane S satisfying dim(S) < p — 1, we have
1=
#ES) g _p g .
> Asymptotic regime: n — oo with p fixed.

Then,

vyvyyy

Vivee (€,—Cy) 5 CN,2(0,C,P)
where the asymptotic covariance and pseudo-covariance matrices are given by:
C =91 (C;®Cp) + Dovec(Cp)vec(Cp)H
P =91 (Cy ®Cp) Kpp + Davec(Cp)vec(Cp)

with K being the commutation matrix. The constants 9; and 9, depends solely on the
distribution of T and function u.



Tyler estimators

D. E. Tyler " A distribution-free M-estimator of multivariate scatter’” The Annals of statistics
1987

F. Pascal, P. Forster, J-P. Ovarlez and P. Larzabal " Performance Analysis of Covariance Matrix
Estimates in Impulsive Noise” |IEEE Transactions on Signal Processing 2008

> Assumptions

> X1, ,Xp € CPX! such that n > p.
> span ({x;}) = CP.
> Tyler estimator is defined by C, the solution of

n H
¢ 723L
ne nyHC-1

i1 "X'Chx

such that %tr C,—=1.
where x1, - - -, X, are independent and follow CES distribution with scatter C,.

> If x1,---x, are independent and follow CES distribution, then tyler estimator is the MLE of

scatter of the random vectors ”iﬁ 500 ﬁ
n



Tyler estimators

F. Pascal, P. Forster, J-P. Ovarlez and P. Larzabal " Performance Analysis of Covariance Matrix
Estimates in Impulsive Noise” IEEE Transactions on Signal Processing 2008

> Assumptions
> Xy, , X, € CP*! independent and follow CES distribution with scatter C, (%tr C,=1)
> n>p.
> span ({x;}) = CP.

» Tyler estimator is consistent:
~ a.s.

C
n n—o0,pfixed P

> Fluctuations of Tyler estimators:

Vavee (€, - C,) eN(0,2,C,P)

n—soo,p fixed
where

C =9:C] ® Cp + Davec(Cp)vec(Cp)"

P =91 (C] ®Cp) Kpp + davec(Cpvec(Cp) T

with K, is the commutation matrix, 9; = thl and 9, = —PPTH.



Comparison with fluctuations of SCM: Some comments

> Fluctuations of the sample covariance matrix (SCM) when xq, - - - , x,, follow Gaussian
distribution with zero mean and covariance Cp:

Then: .
\/Evec (Sn - Cp) i> CN(O, Cscmv Pscm)

where
Csem = (C;®Cp)  Psem = (€0 Cp) Kppp
> Recall, the fluctuations of the M-estimator of the scatter matrix are given by:
Vnvec (é,, - c¢) 9 CN,(0,C,P)
where the asymptotic covariance and pseudo-covariance matrices are given by:

C =91 (C; ®Cp) + ovec(Cp)vec(Cp)H
P =91 (Cs ®Cp) Kpp + Dovec(Cp)vec(Cp)



Comparison with fluctuations of SCM: Some comments

» Let H be any continuous map defined on the set of Hermitian positive definite matrix.
Assume that H(V) = H(«V) for all o > 0. By the Delta method and using the fact H'(C,)
is orthogonal to vec(Cp), we get:

Vi (H(€s) = H(Cg)) % CN(0, ocnr, B

where oy = 9,H'(Cp)T (c; ® c,,) H'(Cp)
By =01H(Cp)T (c[ ® cp) KppH'(Cp
> Applying the Delta method for the SCM, we get:

Vi (H(8n) — H(Cp)) < CN(0, tscm, Bscm)

where e = H'(C,)T (€] ©C,) H'(Cp)

Bsem = H'(€)T (€7 ® C,) KppH' (€



e
Comparison with fluctuations of SCM: Some comments

» For functions satisfying H(V) = H(xV),

> These functions are often encountered in practice:
> ANMF statistics
> etc

H(E,-,) with n observations has the same fluctuations of H(SCM) with nd; observations.
> SINR at the MVDR

CLT on the SCM allows us to retrieve CLT on Tyler and
M-scatter estimators

J
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Regularized robust estimators

F. Pascal, Y. Chitour and Y. Quek " Generalized robust shrinkage estimator and its application to
STAP detection problem” IEEE Transactions on signal processing 2013,

Y. Chen and A. Wiesel and A. O. Hero "Robust shrinkage estimation of high-dimensional
covariance matrices” |IEEE Transactions on Signal Processing 2011

Motivation
» M-estimators of scatter are limited to p < n, otherwise do not exist,
> They might be not well-conditioned if n is not sufficiently high, or the true covariance matrix
has low rank.
= Using M-estimators of scatter can be not desirable in scenarios where we need to compute

the inverse.



Regularized robust estimators: Interpretation

E. Ollila and D. E. Tyler "Regularized M-estimators of scatter matrix” IEEE Transactions on
signal processing” 2014

> Recall that the ML estimator of scatter should minimize the negative log-likelihood function:
n
Lp(PZ) = Z — Iogg(x,’-"Zflx;] — nlogdet(£1)
i=1
> To increase the stability of the solution, it is common to introduce np®(X) to the cost
function. = The penalized cost function becomes:

n
Ln(Z) =) —logg(x{!Z7x;) + nlogdet(X) + pnP(Z)
i=1

where p > 0 is a regularization (shrinkage) parameter.
> This procedure can be extended to M-estimators of scatter, by using a general function «
(u=«') in place of —logg, leading to:

n
Ln(Z) =) «(xf'Z7!x;) — nlogdet(Z~!) + pnP(Z)
i=1



Regularized robust estimators: Interpretation

E. Ollila and D. E. Tyler "Regularized M-estimators of scatter matrix" |IEEE Transactions on
signal processing” 2014

» To ensure stability of Z~1, we consider the penalty function:
P(Z)=ntrz !

— The penalized cost function becomes:

n
Lo(Z) = Z oc(x,’-"}:*lxi) — nlog(det=1) + nptr= ! *)
i=1

> A critical point of (*) is a solution to:



Regularized robust estimators: Existence and uniqueness

E. Ollila and D. E. Tyler "Regularized M-estimators of scatter matrix” |I[EEE Transactions on
signal processing” 2014

» Existence and uniqueness
Theorem

Assume that:

> t— x(t) is bounded below (does not tend to —co)

> Function o«(t) is nondecreasing and continuous for 0 < t < co. Also, the map r(x) = «(€*) is
convex for —oo < x00.

> Function o(t) is differentiable

Then a solution to the following equation
& _1¢ HE-1 H
C=- Z u(xC % )xx + pl,
i=1
exists and is unique. Moreover it coincides with the minimum of £, (Z).
> The regularized M-estimates do not require any condition on the sample x1,--- , X,

— This is in contrast to the non-regularized estimates which do not exist when p < n.



Regularized robust estimators: Numerical evaluation

E. Ollila and D. E. Tyler "Regularized M-estimators of scatter matrix” |IEEE Transactions on
signal processing” 2014

Theorem
Assume that:

> t— «(t) is bounded below (does not tend to —co)

> Function o(t) is nondecreasing and continuous for 0 < t < co. Also, the map r(x) = x(e*)
is convex for —oo < xoo.

» Function o (t) is differentiable
. . . .
» Function u = « is non-increasing

Then, the iterations
n

1 _
Zin= > uxPZ )xixt! + ol
i=1

converges to the regularized M-estimate E,,.



Regularized Tyler-estimator: Existence

E. Ollila and D. E. Tyler " Regularized M-estimators of scatter matrix” |IEEE Transactions on

signal processing” 2014
F. Pascal, Y. Chitour and Y. Quek " Generalized robust shrinkage estimator and its application to

STAP detection problem” IEEE Transactions on Signal processing, 2014

» Regularized-Tyler estimator obtained by setting «(x) = (1 — p)plog(x) or equivalently

U(X) — (1—p)p
~ -
H
X;X;
————————F plp
xHC L (p)x;

Calp)=(1—-p)2 )
i=1

> Since « is not bounded below, the previous result concerning the existence and uniqueness of
the regularized M-estimate does not hold.



Regularized Tyler estimator: Existence

E. Ollila and D. E. Tyler "Regularized M-estimators of scatter matrix” |IEEE Transactions on
signal processing” 2014

F. Pascal, Y. Chitour and Y. Quek " Generalized robust shrinkage estimator and its application to
STAP detection problem” IEEE Transactions on Signal processing, 2014

Theorem
Assume that _
Cond. A :For any subspace S of CP such that 1 < dim(S) < p, the inequality #{x E < (;'(?“77(‘3

holds. Then:
H

n
XiX:
2 f'-Fplp
M X' Ca (P)x)

Ca(p) = (1—p)
exists and is unique.
Comments. Assume that x; are linearly independent. Then:
#ixiesh p-1
—— <
n n

Hence, Cond A is equivalent to p > 1 — g.



Regularized Tyler estimator: Numerical evaluation

Theorem
Assume that

Cond. A :For any subspace S of CP such that 1 < dim(S) < p, the lnequahty
holds. Then, the iterations:

Zpr1=01-p)

:\‘c

+plp

i

> s

converges to the regularized Tyler estimator é,,(p).

xH
I
I

{x €S} i}l;nlgg




Normalized regularized Tyler estimator

Y. |. Abramovich and N. K. Spencer " Diagonally loadded normalized sample matrix inversion for
outlier-resistant adaptive filtering”, ICASSP 2007

Y. Chen, A. Wiesel and A. O. Hero " Robust shrinkage estimation of high-dimensional covariance
matrix matrices” IEEE Transactions on signal processing, 2011

Theorem
Let 0 < p < 1 be a regularization coefficient. The following iterations:

Tia=01-p)2 Z H +p|,,
Tii
S| = e
trZii1/p

converge to the a unique limit for any positive definite initial matrix io. Moreover this limit is
solution to the following fixed-point equation:

~ én(p)
C = <
n(p) 118, (o)
with ) "
~ 1 XX}
Bh(p)=(1—p)= —! + pl
n G e T



Regularized Tyler estimator: Convergence

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” |IEEE Transactions on Signal Processing 2016

1
> Assumptions: Take x;,--- ,x, € CP*1 ie, x; = C2w; with:
> owyp, e, Wy € CP*! independent complex standard Gaussian vectors with zero mean 0,1 and

covariance |,
> We assume that %tGC =1 and that C, is positive definite.

> Regularized Tyler estimator: Let p € (0, max(1l — p, )) Consider C (p) solution to the
following fixed point equation:
n H

i +pl
TP v P
B X,ch ! (p)x;

i

Ch(p)=(1—p)

Rkl

Let Xo(p) be the unique solution to the following equation:

XX
x> =p(l + pl
olp) =p(l—p) [XHZO ) ] elp
Then, for any k > 0,
sup HC —Xo(p ‘ —2* 50

n— o0, pfixed

pelk,1]



Regularized Tyler estimator: Characterization of Xq(p)

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” |IEEE Transactions on Signal Processing 2016

Evaluation of Z((p).
» Recall that Xy(p) satisfies:

XXH

Zo(p) =p(l—p)E m

]erlp

_1
> Multiplying both sides by C, 2, we obtain:

wwh _1 1
Pl—p)E | — | 1 0C, =2 5(p)C,
wHC3ZZ 1 (p)Ciw

Is—1(0\c2 H ; it Fs—1(\c2

> Let C5 X, (p)C; = VDV" the eigenvalue decomposition of C5 X" (p)Cj
» Then,

H H 71\/ D71
P =p)E m}“’" CV=

H1. . . . . .
— E [w“‘,’_,""Dw] is diagonal implying that matrix Xy and C, share the same eigenvector space



Regularized Tyler estimator: Characterization of Xq(p)

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” IEEE Transactions on Signal Processing 2016

Lemma
Consider w = [Wl, cee, Wp} v be a standard complex Gaussian vector. Let D be a diagonal matrix
with positive diagonal elements dy,--- ,d,. Then:
H
ww .
{m =diag(og, -, xp)
with «; fori =1,---,p being given by:
1 1 (p) dh—3 dp— 3
®=——"F p,l,--, 2 1,-- 1, p+1, —=,..., , 2
" 2epdi 1, P O d dp (2)
position

where FE()p ) is the Lauricella’s type D hypergeometric function.



Regularized Tyler estimator: Convergence

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” |IEEE Transactions on Signal Processing 2016

> Recall that: "

p(l—p)E wHDw

} +poVic,'v=D"

2
> Let D = diag(dh, - -, dp). Denote by «;({d;}"_;) = E [ L] } Then,

wDw

1

p(1—p)o;({di}f_;) +

o
Ai g

where cx,-({d,-}le) is computed as previously.



Regularized Tyler estimator: Convergence

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” |IEEE Transactions on Signal Processing 2016

Matrix £y can be computed as:
> Let Cy = VAV* be the eigenvalue decomposition of Cy with A = diag(Aq, - - - ,Ap) and
AL Z A2 2 Ap.

» Start from dl(o], S ,d,(,o). Compute iteratively:

FICRY) 1

' £+ p(1—p)a;(diag(d®))

until convergence. Let dl(?ol, e ,d,(,?o)o be the obtained values after applying several iterations.

> Set Sj oo = Ajdi . Then
o = Vdiag ([S1,00, -+ + Spio]) VI



Regularized Tyler estimator: Hint on the proof

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” IEEE Transactions on Signal Processing 2016

The proof is based on controlling the random elements:
xfCot(p)xi — xF'Z5 (p)x;

VXHEG (0)xiy/xC (0

and showing that they converge to zero almost surely.
> First observe that by the strong law of large numbers,

ei(p) =

H
Zolp) = p(l—p)- ) —p=rgi——+plp

» After some computations based on the resolvent Lemma, we can prove that:
max €; 1—\/I—Z’1 —o(l)) <o(1
max ei(0) (1=, — pZg T~ o(1)) < o)
where o(1) is a term converging almost surely to zero, thus showing the convergence of

max;gi<n €;(p) to zero.
> Again, using some linear algebra manipulations, we can show that amost surely,

€~ Zoter] < ez, este + ot

thus showing that HE,, — Zo(p)’




Regularized Tyler estimators: Fluctuations

A. Kammoun, R. Couillet, F. Pascal and M.-S. Alouini " Convergence and fluctuations of
regularized tyler estimators” |IEEE Transactions on Signal Processing 2016

» Similarly to the M-scatter estimator, we can establish a CLT on /nvec (En(p) — Zo(p)>.

We prove that:
d

n— o0, pfixed

vivee (€4 (p) — Zo(p)) CN (0, My, M2)

with M; and M, are given by:

> The formula is quite involved and does not allow to use results based on the SCM.



Regularized Tyler estimators: Open Questions

The same analysis might be employed to study in the regime n — oo with p fixed:

> Normalized regularized Tyler estimators:

e _ _Ba(p) : & . X;
Ch(p) = %trén(p) with Bs(p) = (1 p) i=1 % (:rT( & + plp
> Regularized M-scatter estimators
¢ 1y He-1
C,=-—- u(x;"C, x)xx + plp
n i=1
> Regularized Tyler estimators with priori
n H
Crlp)=(1-p)= /-/Alill_‘_p-r
Z i=1 Xj Ch(p)x;

where T is a priori matrix.

> Normalized Regularized Tyler estimators with priori
Enlp) = o5 with  Bn(p)=(1—p)Ly" 5 T
nlP) =1y nlp)= P)n2i=1 e (p)x; ptré,TlT'

TiB.(p)
P

Y. Sun, P. Babu and D. P. Palomar " Regularized Tyler's scatter estimator: Existence, uniqueness
and algorithms” |IEEE Transactions on Signal Processing, October, 2014
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[llustrative random models covered by RMT

Let X = [x1, - ,x,] denote the matrix observation. Then,
the following models are encountered in practice:
Thermal noise

RS IS S

> White space and in time:
X =[xy, -, xa]  x;~CN(0,1p)

. . p sensors
> Space and time correlation ¥

1 1
X=CiWT2

> Information-plus-noise model: non-centered
observations with /or without correlation

1
X=CIWT? +A

9 >0 >9

Key Assumption: n, p grow to co with 2 — ¢ J




Illustration: Marchenko-Pastur Law

If Cp =1,

e Histogram
=== Marchenko-Pastur Law

As n, p tends to infinity with % — ¢, the
histogram can be approximated by a

Marchenko-Pastur " e,
Deterministic” curve !

Bulk

Frequency of Eigenvalues

As n, p tends to infinity with 2 — ¢, all the
eigenvalues are contained in the interval

[(1—+ve)? (1 +v©)?]

(1—e)? (1++/2)?

Eigenvalues

it
N)
yel
2}



Spiked random models

Assume that we have:

Y = X AF L
~—~ [3 ~—~—
High rank random Signal lying in a finite
signal dimensional subspace of rank K

where 3 € {0,1}. = Information plus noise model where the information lie in a low-rank
subspace.

» If 3 =0, Y =X, the histogram of $ is composed of a bulk

» If B =1, at most K eigenvalues will appear outside the bulk

-
at most K isolated eigenvalues
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Estimation of covariance matrices

> Problem relevant to several signal processing applications:

> Estimation of direction of arrival
> Estimation of the noise power
»> Detection of signals using Information theoretic criteria

» Consider x1, -+ ,x, € CP, n observations of size p independent and identically distributed of
unknown covariance C,.

> Let X = [xq,---,X,] the matrix of observations.

> Inference problem: Consider 6 = f(C,), where f is a certain functional.

Objective: Estimate parameter 0 from the observation matrix X J

> Classical Approach to handle this inference problem

1. Form the sample covariance matrix S, = L ¥ 7_ x;xH.
2. Substitute the unknown covariance matrix C, by S,.

An estimator of 0 is given by: 8= f(gn)




Estimation of covariance matrices

> As n increases while p taken fixed, then, from the law of large numbers
S, 2%¢,
» The convergence is in operator norm, in that:
IS — Cpll == 0.
> As a result, by the continuous mapping theorem:

0% 0.

— | The conventional estimator 0 is consistent in the regime n — oo and p fixed.




Estimation of covariance matrices

> In practice, it might be the case that n o p if not n < p.

> Large antenna arrays vs limited number of observations = Large dimensional inputs
> Systems with fast dynamics.

> This situation is modeled by the following assumption: n — oo and p — co with 2 — ¢

Random matrix theory regime: n, p — oo with % — c € (0,00) J

> Under this assumption, we still have by the law of large numbers:

S

Bu

~+

Hgn — CPH does not converge to zero.

— | Then, 0 is not a consistent estimator of 0 in the RMT regime |




G-estimation

» Classical signal processing methods.

X1, . Xp .
1 n H
B =1 XiX] 6 = f(Sn)

Sample covariance ma-

. Estimator of 6
trix

> Improved methods using RMT. In general, we proceed into two steps:
1. Understand the behaviour of the conventional estimators under the RMT regime

0 — 0 23 Bias

2. Form a new improved estimator, often referred to as G-estimator that is consistent in the RMT
regime:

Bc—02%0.
X1, 4 Xp Sn _ ~
Ly xxt }—>{ 0 = g(Sn)

Sample covariance ma-
trix

Estimator of ©
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Random Matrix regime of M-scatter estimator

Definition R
For x1, -+ ,x, with n > p, C, is the solution of:

n

,72 (1 HC )xx,H

where v : [0,00) — (0,00) is
> non-increasing,

> ¢ (x) £ xu(x) increasing of supremum ¢ with:

1<dpo<ct ce(01)

1.1
Note that taking X; = C,, x,, and setting C, 2 C,2C2C,, 2,
=~ 1 1 pas
Cp= " ; u (prC 1x,-> x,-x,’-"

== Without loss of generality, we can assume C, = I,.



Model description

> Assumption on the data (Elliptical model): x1,- -, x, independent
1
X; = T,'Cg wW;
> w; € CP, unitarily invariant with ||w;||> = p,
> C, > 0 with limsupy [|C,|| < co
> 1; > 0 independent of w;,
> If v, = %Z;’,l S, there exists m > 0 such that: ¥, ([0,m)) <1— ¢ for all large n a.s.
> [tvp(dt) =1

> Assumption on the tail: For each a > b > 0, we have:

T A ol

t—oo G (at) — b (bt)

— 0.

» Random matrix regime: As n,p — o0, ¢, = £ — c € (0,1).

n

u]
o)
I
i
it




Main challenges

» Contrary to the classical regime, we do not have that C, converges to some deterministic
limit. In particular:

% Yhqu (%xf"C;lx,) x;le do not converge to E {u (%XHC;IX) xxH]

> Major issues with C,
> No closed-form expression
> Sum of non-independent rank-one matrices u (%xﬁc;lx;) x;xH

> No explicit relation between E,, and the random vectors xj, - -+, X,.
— Classical random matrix theory tools cannot be directly used.



Heuristic approach
» Rewriting of en:
> Denote:

n
- =EZU 1XHE_IX. xixt!
) n S I y
i#j



Heuristic approach
> Rewriting of Cn:
> Denote:

1 1 4=~
Ci = = Zu <Exﬁc,, 1x,-> x,-xﬁ
i#j
> Using the identity (A + tw")~1 = A—1/(1 + tvA—1v). Then
1,HC—1
a1l a =S 5%
Tid; £ oxCy i = 1PH/A ;I) 1 HE-1
p 1+Cnu(5x,- €5 5 »Xt CiXi
A Tl — Lxtieq 1 1 HE—1
— T;di— 5Xi me, = ’1 — :g(;x, C= x,-) with
l—cnd pXi C(I)x,)
X
x) =
£ =10 40



Heuristic approach

> Rewriting of Cn:

> Denote: )
. 1 1 -
Ci = = Z u <Ex§"C" 1x,-> x,-xl’f’
i%i
> Using the identity (A + tw")~1 = A—1/(1 + tvA—1v). Then
1,HC—1
a1l a =S 5%
Tid; £ oxCy i = 1pH/A ;I) 1 HE-1
p 1+Cnu(5x,- C,x; »Xt CiXi

> g is monontous and increasing, then %xf"Cn—lx; =g (%xﬁcaxf)




Heuristic approach

> Rewriting of Cn:
> Denote:
Ci)= li 1 HC xix!!
) = n 4 p iX;
i#j
> Using the identity (A + tw")~1 = A—1/(1 + tvA—1lv). Then:

1 HE—1
T-J-élx’v"é Ix; = x Cm
S u(—xHC x-)leE Ix
" pZi=n R p i = (i)
1, He—1
A1 HE— 1y, _ BXi'Cn % _ (; HE—1 ) .
— T;di = o Xi me, = 176n¢<le6 x) =g (5 C, 'x; ) with:
pXi C(i)%i
X
(xX)=c—
BT T o

> g is monontous and increasing, then %xiHé,,—lx; =g ( X; C(l) )
> Using this equality in the expression of é,,,

n
Com 23 u (51 e ) 15 uog ' (S ) xnd

i=1 o=
n

= 72 ( HC )xxf"
i=1

with v =uog 1.

u]
o)
I
i
it




Heuristic approach
» Recall that:

Cn

n 1 .
v <7xﬁc;)1x,-> X;X
i1 \P
> Intuitively éa% and x; are weakly dependent.

SR

i

N



Heuristic approach
» Recall that:

Cn

n

1 He-1
v <fx,- C[i)x,-> X;X;
i1 \P
> Intuitively éﬁ and x; are weakly dependent.

SR

— We expect in particular using the convergence of quadratic forms lemma that
1 g~ 1~ 1
fxf"C[*.)lx,- ~1;=trCl ~
p 1 P (i)
—> We thus have:

;trC;l




Heuristic approach
» Recall that:

Cn

n

1 4~
v =xHC1x; | x;x!
p i (i) i
i=1

> Intuitively c % and x; are weakly dependent.

SR

— We expect in particular using the convergence of quadratic forms lemma that

il s 1 = 1 =
7xf"C[’,.)1x,- ~ 'r,-Etr Ca)l ~ T,-;trC;I
p

—> We thus have:

N 1 T

Ch>~ = v <T,-ftrC;1) x,-x,H

n< P
i=1

> We assume that %tré;l ~Yp




Heuristic approach

» Determination of vy .
> Recall that:

:M—l

Z :%E )

> Moreover, y ~ %tr C,'. Hence,

u]

o)

I

i
it
N
pe)
i)



Heuristic approach
» Determination of vy .
» Recall that:

1 1
C,,:;Zlv( :;Z TWW
i= =
> Moreover, v ~ trC; 1. Hence,
1 (1¢
~ Ztr | =
2% pr(nZv
> Let W = [wy,

1
(TiY)TiWiW,H>
i—1
,w,] and D = diag{t;y}_;. Then

1
vt (WDWH) " = my o (0)
where m is the stieltjes transform associated with wbw" at 0




Heuristic approach
» Determination of vy .
» Recall that:

1 1
C :75 :75
,, ",-:1‘/( nl TWW
> Moreover, y ~ 1 ré,Tl. Hence,
1 1

By =i =

Y pr<n§ v
> Let W = [wy,

—1
(Tiy)TiWiWrH>
i—1
,w,] and D = diag{t;y}_;. Then

1

vt (WDWH) = m 1 o (0)
where m is the stieltjes transform associated with wbw" at 0
> Using standard results from random matrix theory,

v(Tiy)
m%WDWH < Z1—0—c’rv T;

1
v)m%WDWH(0)>




Heuristic approach
» Determination of vy,

> Recall that:

1
== Z ) Tiwwl
. n
i=1 i=1
> Moreover, y ~ %tr C- Hence,
=il
1 1 & o
v st (23 vi(Ty) Tiww]
p =
> Let W= [wy,:--

w,] and D = diag{T;v}]_;. Then

1
vt (WDWH) = m 1 o (0)
where m is the stieltjes transform associated with wbw" at 0
> Using standard results from random matrix theory,

1
(1 Tiv(Tiv)
m1wpwH (0) = <;I; 1+ ctv(T; (0)>

Y) LwowH
— We define Y as a solution of the fixed pomt equatlon

i, 2 Tiv(T;

. (, 7v)>
n¢
i=1

1+ ctiv(tiv)y

(1 E W(Ty)
7}/(”; 1+ cp(Tiy




Main result

R. Couillet, F. Pascal, J. W. Silverstein " The random matrix regime of Maronna’s M-estimator
with elliptically distributed samples " Elsevier Journal of Multivariate Analysis

Theorem
Asymptotic equivalence Let 'y be the unique positive solution of :

1.1 iv)
n ; 1+ c(Tv)
Then, under the assumptions defined earlier, we have:

n
> viTiy)xixt!

(=il

ICh — Snll 255 0 where S, =

S|

> Takeaways
> Propagatlon to S, of first order results on C,
> S, can be studied using classical results from random matrix theory, contrary to C..
— Important consequences for array signal processing applications.



Main steps of the proof

> Let d; = %WIHE I-}W,‘. The proof consists in showing that
. v(T;d;
max |e; — 1| 225 0, with e = (vid;)
1<i<n v(Tiv)
» We relabel ey, - -, e, such that:

» We shall prove that for each ¢ > 0,

e1>1—Cio. and e, <1+ 10i.0.
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Main steps in the proof

> We proceed by contradiction. We assume that e, > 1+ € i.o.

N
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Main steps in the proof

> We proceed by contradiction. We assume that e, > 1+ € i.o.
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Pt oo MU TRy or ebust smationf Fscater Ssematorf hefree ndemmatsegme R
Main steps in the proof

> We proceed by contradiction. We assume that e, > 1+ € i.o.

1 .~
v(Thyn)en = v(Thds) = v ("C,,;W,'?CF,}SW,,)
1 1 o
=v (TannH (; ZT,-V(T,-d,-)W,-Wf") w,,)
i<n

N



Pt oo MU TRy or ebust smationf Fscater Ssematorf hefree ndemmatsegme R
Main steps in the proof

> We proceed by contradiction. We assume that e, > 1+ € i.o.

-1
g T,'d,')W,'W;H> wj,
i<n
1 1 -
=v THEWnH ;ZT,-e,-v(T,-y,,)W,-Wf’) wp,
i<n

N



Pt oo MU TRy or ebust smationf Fscater Ssematorf hefree ndemmatsegme R
Main steps in the proof

> We proceed by contradiction. We assume that e, > 1+ € i.o

-1
iv( ,ynwwH> W,
i<n )
-1
< v | The, < ZTV ,y,,ww) w,,)
i<n

N



Main steps in the proof
> Recall that:
v

11 1
(Thynlen S v (Tnen IEWnH (; > Tiv(Tivn

—1

H

Jwiw; > Wp
i<n



Main steps in the proof
> Recall that:

(Thyn)en <

11 1
v TnenIEWnH (; ZT,’V(T,”Y,,

=il
)WiW,H> Wp
i<n
» Using standard approaches from random matrix theory, we can prove that:

i1l
MENTEE .
9 5 (nZme

—1
H a.s,
Jw;w; > w; —vp| — 0
i<n




Main steps in the proof
> Recall that:

(Thyn)en <

11 1
v TnenIEWnH (; ZT,’V(T,”Y,,

=il
)WiW,H> Wp
i<n
» Using standard approaches from random matrix theory, we can prove that:

i1l
MENTEE .
9 5 (nZme

—1
H a.s,
Jw;w; > w; —vp| — 0
i<n

v(TnYn)en < V(The, t(vn— €n)), with e, — 0.




Main steps in the proof
> Recall that:
v

=il
11 1
(Thyn)en < v | The, 1*WnH (; ZTiV(TiYn)WiW,H> Wp
p i<n
» Using standard approaches from random matrix theory, we can prove that:
i1l
ax [—w;' | = T; i
R Ep e
==

—1
H a.s,
Jw;w; > w; —vp| — 0
i<n

V(Thyn)en < V(Theyt(vn— €n)), with e, — 0.
» Use P (x) = xv(x),

—1
P (Tthyn) < w(Tne;an) (1 — eanl)
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Main steps in the proof
> Recall that:

v(ThYn) ( ZTV TiYn)W;W;

=il
> Wn
I<I'l
» Using standard approaches from random matrix theory, we can prove that

max |~ Tiv( wiw!
1<j<n | p Wi ( Z TiYn)
—_—

1
a.s,
) j — Yn| — 0.
i<n

v(the,  (vn— €n)), with €, — 0

v | The,

v(Tayn)e
» Use P (x) = xv(x),

1 -1
WP (Thyn) < W(The, “vn) (1 — €nYp )
» Assume that e, > 1+ { i.0, and T, € [a, b]
Tn — To and Y — Yo,

P (Tovo) < W (

Consider a sequence over which e, > 1+ ¢
F].FLJ:/%)' Contradiction

o

&




Simulations

0.5
- Empirical eigenvalue distribution of % ):;-7:1 x,-x’H

e Limiting density

Density

30

15 20 25

Eigenvalues

Figure: Histogram of the eigenvalues of % > x,-xf" for n = 2500, N =500, C, = diag(has,3h2s,10hs0), T1

with T'(.5, 2)-distribution.



Simulations

T T T T T T
- - Empirical eigenvalue distribution of € L - - - Empirical eigenvalue distribution of §p L

Limiting density

Limiting density

Density
Density

0 0.5 1 15 2

Eigenvalues Eigenvalues

Figure: Histogram of the eigenvalues of €, (left) and §, (right) for n = 2500, N = 500,
Cp = diag(1125, 3h2s,10hsg ), T1 with T'(.5,2)-distribution.



Simulations

T T T T T T
- - Empirical eigenvalue distribution of € - - - Empirical eigenvalue distribution of §p
Limiting density

Limiting density

Density
Density

0 0.5 1 15 2 0 05 1 15 2

Eigenvalues Eigenvalues

Figure: Histogram of the eigenvalues of €, (left) and §, (right) for n = 2500, N = 500,
Cp = diag(1125, 3h2s,10hsg ), T1 with T'(.5,2)-distribution.

» Remark/Corollary: Spectrum of €, a.s. bounded uniformly on n.



Extension to information plus-noise model

A. Kammoun and M.-S. Alouini " The random matrix regime of Maronna's M-estimator for
observations corrupted by elliptical noises” Submitted to Journal of Multivariate Analysis

> Information plus noise model:
X = AS,‘ aF \/%,'W,‘

A € CP*K is of full rank.

Let B, = AAH, we assume liminf %tr B, >0

s1,---,8p ~ CN(0, lx), independent standard Gaussian distributed vectors.
Same assumptions on functions ¢ and u,

Random matrix theory regime: n, p, K — oo

Then:

vyvyvyyYyYy

ICn — Sall 23 0,

where

i=1
with 81,---, 8, being the unique solutions to:
=

1 1 & v(5)(Bn+1lp)
5,_Etr(Bn+T:|p) ;;W



Illustration

Density

Eigenvalues

Figure: Histogram of the eigenvalues of S, against the limiting spectral measure with n = 800, p = 80
Bp = diag(0.5l30, I30, 0|20)
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Illustration

Density

02 04 06 08 1 12 14 16

Eigenvalues

Figure: Histogram of the eigenvalues of (oY against the limiting spectral measure for u(x) = (1 + )/ (x + x)
with o« = 0.1, N = 80, n = 800

[m] = =

Qa0



Extension to spiked models

> Assumption: xi,---,Xx, € CP independent:

K
xi =) /Paesi + /Tiw;
=1

> w; € CP independent standard Gaussian vectors,

» T; deterministic scalars.

> pr=--2pk 20

> aj,---,ak € CP*! deterministic with Z'le pgaga’g’ = diag {p,—},K:l.

> L1y 8c = v weakly. o

> s, -, Skn independent with zero mean and unit variance.
Theorem

Under the previous assumptions, as n — oo,
= N a.s,
ICn —Snll == 0,

with
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Eigenvalue Localization

R. Couillet "Robust spiked random matrices and a robust G-MUSIC estimator " Journal of
Multivariate Analysis 2014

Theorem (Eigenvalue localization)

Let Aq, - ,3\,, be the eigenvalues of é,,. Define &(x) unique positive solution to

_ tve (ty) -
509 = (< [ rtenamm @)

Further denote

A g
_ = lim —c
P x}S+

_80)ve(ty) U i s P14 VE)?
(J1+5(x)tvc(tv)v(d”) r 3T A= con)



Eigenvalue Localization

R. Couillet "Robust spiked random matrices and a robust G-MUSIC estimator " Journal of
Multivariate Analysis 2014

Theorem (Eigenvalue localization)
Let Aq, - ,5\,, be the eigenvalues of é,,. Define &(x) unique positive solution to

_ tve (ty) -
509 = (< [ rtenamm @)

Further denote

(J 8(x)ve(ty) (dt)>—1 o+ & Peoll+VC)°

A
- =0 | T s tve (o) ¥ YA~ chw)

x}S+

Then, if pj > p_, ?\ 23 Aj > S*, otherwise lim sup,7 < ST as., with Aj unique positive
solution to

ve(TYy) o
‘C<5“)Jm @) =



Simulation

1.2 T T T T
I Eicenvalues of 157y

s Limiting spectral measure

Density

Eigenvalues

Figure: Histogram of the eigenvalues of % Y i viyi against the limiting spectral measure, L =2, py = p> =1,
N = 200, n = 1000, Sudent-t impulsions.



Simulation
8 I
I Eigenvalues of Cp
e Limiting spectral measure
6| i
2
2 4| |
0)
a Right-edge of support Ay
s+
2 —
0 | | I | I
0 0.2 0.4 0.6 0.8 1 1.2

Eigenvalues

Figure: Histogram of the eigenvalues of C'n against the limiting spectral measure, for u(x) = (1 + «)/(x + x)
with « =0.2, L=2, p; = po =1, N =200, n= 1000, Student-t impulsions.



Comments

scatter.

» SCM vs robust: Spikes invisible in SCM due to impulsive noise, reborn in robust estimate of




Comments

» SCM vs robust: Spikes invisible in SCM due to impulsive noise, reborn in robust estimate of
scatter.

> Largest eigenvalues:

> A;(C,) > S+ = Presence of a source!

> A;(C,) € (sup(Support),S*) = May be due to a source or to a noise impulse.

> Ai(Cp) < sup(Support) = As usual, nothing can be said.
= Induces a natural source detection algorithm.
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Music algorithm

A uniform array of p antennas receives signal from K radio sources during n signal snapshots.
Objective: Estimate the arrival angles 61, ---, 0.

02
) \

rYYrry




Source Localization using Music Algorithm

We consider the scenario of K sources and p antenna-array capturing n observations:
K
Xi =Y VPrap(0k)ske +VTw, t=1,---,n
k=1

1

ewrsme

> Ap:[ap(el],~~~,ap(9K)} with a,(0) =
el(p—l)nsine

» Objective: infer 01, -, 0, from the n observations

> Let X, = [x1, -+ ,Xp], then,

X, = A, diag {p;}; S + Wdiag {t;}7_;

» If K is finite while n, p — +oc0, the model correponds to the spiked covariance model.

» MUSIC Algorithm: Let TT+ be the orthogonal projection matrix on the span of AA” and
TT = Iy — TT (orthogonal projector on the noise subspace). Angles 01, - -, 0 are the unique
ones verifying
n(8) £ay(6) Tlay(8) =0



MUSIC algorithms

» Traditional MUSIC algorithm: Angles are estimated as local minima of:
i = a,(0)TTa,(0)

where TT is the orthogonal projection matrix on the eigenspace associated to the p — K
largest eigenvalues of %X,,X,’;’.

» G-MUSIC: Angles are estimated as local minima of : 7js where fig is a consistent estimator
of n(0) that is based on the sample covariance matrix %XHX,';’.

~ §n ~

Sample covariance matrix Consistent Estimator n(0)

X1, Xp
—_— >

> Robust G-MUSIC: Angles are estimated as local minima of : figz ¢ where fi ¢ is a consistent
estimator of n that is based on the M-scatter estimator C,.

~ En ~
C, }—>{ g(Cy) ’

M-scatter estimator Consistent Estimator n(0)

X1, Xn
—_—




> (i, eigenvector of k-th largest eigenvalue of ¢,

H

Eigenvalue and eigenvector projection estimates
> uy eigenvector of k-th largest eigenvalue of AAH Z,Kzl pia;(0)a;(0)




Eigenvalue and eigenvector projection estimates

> uy eigenvector of k-th largest eigenvalue of AAH Z:K:I pia;(0)a;(0)"

> (i, eigenvector of k-th largest eigenvalue of ¢,

Theorem (Estimation under known v)

1. Power estimation. For each p; > p_,

1
e (5(&-) [ — v(dr)) 25

(A Tve(Ty)
2. Bilinear form estimation. For each a, b € CN with ||a|| = ||b]| = 1, and pj > p—
S afuafb— Y watdalb 250
k.pk=pj k.pk=p;

J ve(ty) 2'V(dt)
(1+6(3\k)tvc(ty))
Wy =
J ve(ty) v(dt) l—lj 8(Ap)?t?ve(ty)? v (dt)
14+ 8(Ag)tve(ty)

(1+6(Xk)tvc(ty))2



Eigenvalue and eigenvector projection estimates

Theorem (Estimation under unknown v)
1. Purely empirical power estimation. For each p; > p_,

2. Purely empirical bilinear form estimation. For each a,b € CN with ||a|| = ||b|| = 1, and each
Pj = P—,
> auwfb— Y Wb 220
k.pk=pj k.pk=p;
where
1y v(%i¥)
A 2
M1 (1+ 8RR (39)
Wy =

<
[1>
S|
[ =
X
(@
=
X
Kad
1>
| =
-
X
T
(@}
Syl
X
[eg}
X
")
[}
[eg}
&
o
c
=
oy
<
3
2
)
>
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Application to G-MUSIC
> Assume the model a; = a(0;) with

a(0)=p 2 [exp(27r1djsin(9))]N

—1
=0



Application to G-MUSIC

> Assume the model a; = a(0;) with

a(0) = p~ 2 [exp(2midjsin(6)) 1V

Corollary (Robust G-MUSIC)

Define firg (0) and ARy (0) as
1U.pj>p—1}I

frg(0) =1— Y wia(0)*d,d,a(0)
k=1

1U.pj>p—1}I
iR (0) =1— 3 Wea(0)*d,0,a(0).
k=1
Then, for each p; > p_,

a.s.
GJ- — GJ-
Aemp a.s, i
07" —0;
where

6; £ argmin {fire (0)}
eeﬂzjK

éfmp £ argmin {ige (0)}.
0Pk



Localization functions fjx (6)

0.8

0.6

0.4

0.2

Simulations: Single-shot in elliptical noise

—@— Robust G-MUSIC

— -@ - Emp. robust G-MUSIC
—6— G-MUSIC

— -©0— - Emp. G-MUSIC
—=&a— Robust MUSIC
—8— MUSIC

0 [deg]

18

Figure: Random realization of the localization functions for the various MUSIC estimators, with N = 20,
n =100, two sources at 10° and 12°, Student-t impulsions with parameter 3 = 100, u(x) = (1 + «)/ (o + x)
with o = 0.2. Powers p; = p, = 10%5 =5 dB.



Simulations: Elliptical noise

101 =
-| | —@— Robust G-MUSIC
| | - -@ - Emp. robust G-MUSIC
1024 & | —o— G-MUSIC
- | = o~ - Emp. G-MUSIC
& 5 | | —&— Robust MUSIC
5 103 | 5 | —a— music
| E =
— B B
<
R (e E
s - =
£ N B
o 1075 | E
Il - =
3 - .
g B ]
c
§ 10°F
= =
107
10-8 l l l l l l
—5 0 5 10 15 20 25 30
p1,p2 [dB]

Figure: Means square error performance of the estimation of 6; = 10°, with N = 20, n = 100, two sources at
10° and 12°, Student-t impulsions with parameter 3 = 10, u(x) = (1 + «) /(o + x) with o« = 0.2, p; = p2.
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Regularized estimators



Regularized estimators

> Recall in Gaussian settings, the Ledoit-Wolf estimator is given by:

1 n
(l—p);Zx,-x,H—kplp, for some p € [0,1].
i=1

> Regularized Tyler estimators in elliptical distributed data settings

i Z x;xH p—n
C =(1—p)= — +pl,, p € (max40, 1
(0= (=003 T e (max{o, 2"} 1]
< én(p) & 1¢ X,‘XH
C = = , B 1—p)= ~— + plp, € (0,1
()= 1 gy Brle) = p)n;%xﬁcgl(p]xl plo, p € (0,1]



Main theoretical result

» Which estimator is better ? There is no clear answer to this question
> Result using RMT It can be proven that they are equivalent in the asymptotic random
matrix regime.

> Assumptions

> Elliptical model:

1
x; = /T;C2 w;
with wyq, - -, w, independent standard Gaussian random vectors.
> Matrix C, satisfies %trCP =1 with limsup ||C,|| < oo
> v, = }; PR 8, (Cp) — v, weakly with v # 8¢ almost everywhere.



Regularized Tyler estimator

R. Couillet and M. R. McKay " Large Dimensional Analysis and Optimization of Robust Shrinkage
Covariance Matrix Estimators” Journal Of Multivariate Analysis 2014

Theorem A
Regularized Tyler estimator For € € (0, min{1, c™1}), define R. = [e + max{0,1 — ¢ 1},1]. Then,
as p,n— oo, p/n— c € (0,00),

sup [€a(p) —$a(p)| 220
Peﬁﬂ
where
o il & x;xH
Ch(p)=(1—p)= = + o/
ne IxHE(0)
& 1 1—-p 1< .1
Sh = — = Ciw;w/C? + pl
() = o1 T= (T = pie 2, 7 WM Co + ol

Moreover, p — ¥ (p) is continuous on (0, 1].



Normalized Regularized Tyler Estimator

Theorem (Normalized Regularized Tyler estimator)
For ¢ € (0,1), define R, = [e,1]. Then, as p,n — oo, p/n — c € (0,00),

ap [0 -S.0)
pEﬂQ
&~ én(p) 5 1 XixH
whereCp(p) = —<——, By(p)=(1—p)= : + ol
TtrBu(p) = S

% 1— 1
Sh(p) = l—p—:)T nZC2ww C2 +- mlp
P

in which T, = pY(p)F(¥(p); p) with, for all x >0,

1(p—c(l—p))+\/i(p—c(l—p))%(l—p)%

F(X:p):2

and ¥ (p) is the unique positive solution to the equation in vy

N
Z ?\i(cn)

» - :
i71 Y0+ tr=prerFrier M (Co)

=

Tl

Moreover, p — v (p) is continuous on (0, 1].



Asymptotic model equivalence

R. Couillet and M. R. McKay " Large Dimensional Analysis and Optimization of Robust Shrinkage
Covariance Matrix Estimators” Journal Of Multivariate Analysis 2014

Theorem (Model Equivalence)
For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

5.(p) y R .
P = +ﬁ:Sn(p):(1—p1;;czw,w,cg+plp.

Besides, (0,1] — (max{0,1—c~1},1], p+— p and (0,1] — (0,1], p — @ are increasing and onto.



Asymptotic model equivalence

R. Couillet and M. R. McKay " Large Dimensional Analysis and Optimization of Robust Shrinkage
Covariance Matrix Estimators” Journal Of Multivariate Analysis 2014

Theorem (Model Equivalence)
For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

5.(p) y R .
P = +ﬁ:Sn(P):(l—pJ;;CEW,’W,-CE—O—pIP.

Besides, (0,1] — (max{0,1—c~1},1], p+— p and (0,1] — (0,1], p — @ are increasing and onto.

» Up to normalization, both estimators behave the same!
> Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator



Asymptotic model equivalence

R. Couillet and M. R. McKay " Large Dimensional Analysis and Optimization of Robust Shrinkage
Covariance Matrix Estimators” Journal Of Multivariate Analysis 2014

Theorem (Model Equivalence)
For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

5.(p) y R .
P = +ﬁ:Sn(p):(1—pJ;;czw,-w,cg+p/,,.

Besides, (0,1] — (max{0,1—c~1},1], p+— p and (0,1] — (0,1], p — @ are increasing and onto.

» Up to normalization, both estimators behave the same!
> Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator
> About uniformity: Uniformity over p in the theorems is essential to find optimal values of p.
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Optimal Shrinkage parameter

» Chen sought for a Frobenius norm minimizing p but got stuck by implicit nature of Cy(p)

N
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Optimal Shrinkage parameter

» Chen sought for a Frobenius norm minimizing p but got stuck by implicit nature of Cy(p)
> Our results allow for a simplification of the problem for large N, n!
> Model equivalence says only one problem needs be solved.




Optimal Shrinkage parameter

> Chen sought for a Frobenius norm minimizing p but got stuck by implicit nature of Cnl(p)
> Our results allow for a simplification of the problem for large N, n!

> Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)
For each p € (0, 1], define
b 1tr<(én(p)—cp)2>.

A 2
A 1 Colp) _
Dn(p) = ptr ((trén(p) c,,) )  Dn(p) P

M, = lim, % T A2(Cp) and p*, $* unique solutions to

L M271 * C
Denote D* = c 5=, 0% = a1+

= Tb* SS p*_
+p* 1=+ Ty

*

)

1 1—p*
F067) T=(1-p%)c

Then, letting ¢ small enough,
inf Dy(p) 23 D*, injg Dy(p) 22 D*
pER,

pERe
Dy (p*) 25 D*, Dy(p*) 5 D*.



Estimating p* and p*
> Theorem only useful if p* and p* can be estimated!



Estimating p* and p*
> Theorem only useful if p* and p* can be estimated!

» Careful control of the proofs provide many ways to estimate these.
> Proposition below provides one example.




B e
Estimating p* and p*

> Theorem only useful if p* and p* can be estimated!

» Careful control of the proofs provide many ways to estimate these.
> Proposition below provides one example.

Optimal Shrinkage Estimate
Let p, € (max{0,1 — c~1},1] and {, € (0, 1] be solutions (not necessarily unique) to
6n Cn

il @ [ 27

»trCn(Pn) xxt!

p 1 150 i _
ptr n Zi:l %”X;HZ 1

< lzn X,H n(Bn) 71x;
P 2i=1 " 2 _ cn

HEy(pn) 1%, H o\ 2
1— 3, +p Ly XEnlnl 72X 1 x;xt
Br By L1 = 2 st X Te ) | L
P

defined arbitrarily when no such solutions exist. Then



Simulations

3 T [ T T
—@— inf,c(01) Oy (p)}
- @ - Dy(sp)

—6— D*
—B— Dy (80)

Normalized Frobenius norm

0 | | | | | |

1 2 4 8 16 52 64 128

n [log, scale]

Figure: Performance of optimal shrinkage averaged over 10000 Monte Carlo simulations, for N = 32, various
values of n, [Cyl; = rl"=I with r = 0.7; 3y as above; Ppo the clairvoyant estimator proposed in (Chen'11).

[m] (= = =




Second-order statistics of the regularized Tyler estimator

» Motivation: From above, we know that:

a.s,

sﬂpllén(m —Sa(p)| 2% 0,

> First order implications :
> [a"C.(pIb—a"S,(p ‘ i,
> |1t f(Co(0)) — Ltrf (S \——>0

» Does not imply propagation to S,,(p) of second-order results on én(p).

» From simulations it seems that:
1 = N s,
nz=¢||Calp) — Snlp)|| 2% 0.
= ni—e (aHé,,b— aHg,,b> — 0, Weak result

» Since \/ﬁaHgnb — /maE [§n] b — N(0, 02), we expect that:

Vnal€,b — /na"E [é] b — N(0, 0?)



Fluctuations of quadratic forms of E,,(p)

R. Couillet, A. Kammoun, F. Pascal " Second order statistics of robust estimators of scatter.
Application to GLRT detection for elliptical signals” Journal of multivariate Analysis 2015.

Theorem
Let a,b € CP with ||a|| = ||b|| = 1. Then, as n — oo with p/n — c € (0,00) for all e > 0, k € Z,

sup p'—¢ aHEﬁb HSk b| 2% 0,
pPERK

» Comments:
> The proof is involved and relies on Martingale computatlons
> The fluctuations of quadratic forms associated with C, as the same as that associated with S,
> This result has important implications in array signal processing applications wherein such quadratic
forms naturally arise.
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Application: Radar detection

N



Application: Radar detection

\

Hy : received signal = noise
emitted signal

H; : received signal = target signal + noise
received signal

Hy:x=y No target

s N = Hy:x=ap+y Presence of target
@ lpll =1

transmitter receiver

> Clutter model: Compound Gaussian distribution

T;  T; heavy-tailed
i =+/T;izi  where ! S
£h ! { z;  Gaussian C,

> If C, is known up to a scale factor, the GLRT principle leads to the following detector
(Normalized matched filter)

He—-1
i

\/P*Cplpy/xHCo1x 9§0

e



Adaptive Normalized Matched Filter (ANMF) detector

> In practice, matrix C is unknown.

= We assume that we have n observations containing only noise. These data are often called
secondary data.

> Matrix C,, is estimated using the regularized Tyler estimator en(p) given by:

¢ (1—p) v xixt!
Ch(p) = 1 + plp
2 é IxHCL (o)X,

> The statistics T}, is replaced by:




Choice of the regularization parameter

> The parameter p plays an important role in the performances of the methods using the
regularized Tyler estimator.
AN

Badly-conditioned
estimator High bias

Well-conditioned esti-
Low bi ator

P

9 How to find the p that satisfies good balance between bias and conditioning of the estimator

> Classical methods for choosing p

‘ Select the value that minimizes a certain loss function.

» Drawbacks of this approach: Generic values that are not necessarily adapted to the
underlying application.
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Optimal design of the ANMF detector

> Select the parameter p and the threshold T" such that:

> Maintain the probability of false alarm at a fixed rate P,

Pra =P [Ta > THo|

> Maximize the probability of detection:
Py 2
— Need to study the fluctuations of 'IA'n.

[To > TIH]




Asymptotic False alarm probability and probability of detection

» Initial observations
> If the threshold T is taken fixed, then as n, p — oo with % — ¢ and under Hy

:I\_n a.s, 0.
= Trivial result of little interest!

> Select the parameters such that we avoid empty statements, Pg, — 0 and Pq — 1.

> Consider ' = ﬁ.

Pra=P(Ta>T) = w(ﬁﬂ > rlHo)  of order 1.

> Evaluate the detection probability: If [[p|| =1 and a= 0O(1
Py :P(fn > r) :P(ﬁfn

» Techniques of calculation Since

> r\Hl) of order 1.

aHéglb — aHgglb‘ —0

sup pl—e
pERK

the fluctuations of '7',, are the same as '7',, where é,, is replaced by §,,:
_ xS, (p)p|

T = _ i
\/p”Sﬁlip)p xHS 1 (p)x




Asymptotic false alarm and detection probabilities
> Recall

’x/ﬁngﬁl(p)p‘
\/p”gﬁl(p)p xHS, 1 (p)x
> The fluctuations are due to ‘\/ﬁx"@;l(p)p‘.

\/ﬁfn:

— As n, p — oo and condition on T
» Under Hp: \/ﬁf,, ~ || X]] with X ~ N (0, 0‘,%'2).
> Under Hi: \/ﬁﬁ, ~ || X]| with X ~ N(up, (rf,lz)

1p"C,Q%(5)p . o1 A\ T
o2 = 2W <ptrC Q,(p )(lfc(lfp)zm(*p)zgtrCf,Qﬁ(PO)
2 /PHQu(p)p O}T
Thcao

Up = | —=
VT [Tt CoQp(p

where m(—p) is the unique solution to:
c(l— _
m(—p) = <p+ %trcp (Ip + (1= p)m(—p)Cp) 1)

_ . B —1
with Qp(p) = (1o + (1= p)m(—p)Cp) " and 5 = p (p+ ydor =iye) -



False alarm performance

Theorem (Asymptotic detector performance)
As p,n — oo with p/n — c € (0,0),

~ Y 'Y2
22 [P (70> J5) ~eo (2 )| -
where p— § =p (D + ey 1_(11_—pp)c) and
2(5)2 1 PC,Q5 (P
T 2pMQ,(p)p- 1trCoQp(p) - (1— c(1—5)2m(—5)2 3 trCRQ3(
with Qp() £ (I, + (1 — p)m(—p)Cp) L

5))




False alarm performance

Theorem (Asymptotic detector performance)
As p,n — oo with p/n — c € (0,0),

wherep»—)f):p(p+ L 1-p

pHC,Q%(5)p
2 pHQy(p)p - 1¢rCpQp(5) - (1 c(1— p)2m(—

5)21trC3Q3(5))
with Qp(5) 2 (Ip + (1 — p)m(—5)C,) .

> Limiting Rayleigh distribution
= Weak convergence to Rayleigh variable Ry (f)



Detection probability performance

Theorem (Detection probability)
As p,n — oo with cp = £ — c € (0,00),

~ r r
P[nm)>;%w4—E[@(apyaﬂﬁﬂ]aa

where the expectation is taken over the distribution of T, o,(p) has the same expression as in the
previous theorem and

V11— c(l—5)2m(—p)1trC3Q@3 (5
glp) = \/7 (p Q,p(p
/pHCPQZ(

and Qy is the Marcum Q-function.

sup
PERK




Optimal design of the ANMF detector

> To maximize the probability of detection, p should be set such that:

Hp

*
= arg max —
P gmax

= argmax fo(p) (3)
with )
(1-c—5)?m(—5)1trC3Q3(5)) (p"Qp(5)p)

PHC,Q3(5)p

» For false alarm probability 1, test statistics threshold r set to:

r=op(p)y/—2logn

fp(p):

= Optimal design
> Select p* solution of (3)

> Select the threshold r = o (p*)y/—2logn
X Optimal values depend on unknown Cy. We need to build consistent estimates



e
Optimal design of the ANMF detector

Consistent estimates of o,(p) and f,(p)

> Define f,(p) and 62(p):

. o 2/(1 4 (1 —cn+ cnp)?
fo(p) = (pPC,1 (* Cn(p) = )
p(p) (P n (p)p> ptr (P)—p <pHé;1(p)p7ppHé;2(p)p>

He—2

_ 5P Cr(pp

! P oAC, T(o)p
1—cp+cpp)(l—p)

n 1
G%(P) = 5 (
» Then, we have:

sup }6p(p) - Gp(P)} 230,
pPERK

sup |fo(p) — o (p)
pPERK

Optimal design of the ANMF detector
> Select p such that:

» Select the threshold such that:



Numerical illustration

Experiment Setting ROC curve

> N, number of samples 1

> N, number of pulses

> p= aNp(fd) ® ap, (fs) where
ay(f) ={exp(h2m(L — 1)f }

2
> Cy x 2
Ne 2 H o
(v + 2% oA, (fy, ) AN, Uy, 6)7) £ — Poposeddein
. _ S m—— Theory
with Ay, (fa;, f5;) = an, (fa,) @ an, (f5;) 3 04f —— Design using potria
> K-distributed clutter with zero meand &
and shape v =4.5
0.2 - o
» Compare with po151a given by:
A NerCo— 1 — |
Potila = ——— — 1 2 3 4 5
NtrCo — 1+ n(N+1) (N_ trCy” — 1) False alarm probability -10~2

wh.ere Co is the conventional Tyler Fig. 1: ROC curves for non Gaussian clutters when N = 128 (Ng = 10, Np = 25),n = 128,
estimator. fs = 0.5, fg = 0.2,a = 0.3



Conclusion

> Provide recent results on robust statistics in classical and RMT regimes

» Discuss the impact of these results on several applications : Source localization and radar
detection

> Show how to adapt the tools from random matrix theory to the field of robust statsitics.



Open questions
Classical regime:
> Extend the asymptotic convergence tools to other robust-scatter estimators : regularized
robust-scatter estimators, normalized robust scatter estimators

» Exploit these results to understand the impact of the normalization on the performances of
normalized robust-scatter estimators.
Random matrix theory regime
» Study linear statistics of the robust-scatter M estimator.
» Equivalence between e,, and §,, suggests that good performances should be also obtained
when considering the following estimator:

e (Q—p) ¢ xixt
S:TZLHIX.JFPIP'
i=1 p=i 7

» Study the performances of methods using S instead of C,
» Extend these results to observations not necessarily following CES distributions, example
arbitrary deterministic outliers.

D. Morales-Jimenez, R. Couillet and M. R. Mckay " Large Dimensional Analysis of Robust
M-estimators of Covariance with outliers” IEEE Transactions on Signal Processing 2015.

For both regimes
> Study the joint mean and scatter robust estimators.

— Application hyperspectral imaging.
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