Large Random Matrices and Applications to Statistical Signal Processing

Jamal Najim najim@univ-mlv.fr

CNRS & Université Paris Est

Summer school - June 2016 - Télécom Paristech

Introduction

Large Random Matrices

Aim and outline Basic technical means

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Large Random Matrices

Random matrices

It is a $N\times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij}; 1 \le i, j \le N)$ are random variables.

Matrix features

Of interest are the following quantities

- ▶ \mathbf{Y}_N 's spectrum $(\lambda_i, 1 \leq i \leq N)$ in particular λ_{\min} and λ_{\max} .
- linear statistics

Trace
$$f(\mathbf{Y}_N) = \sum_{i=1}^N f(\lambda_i)$$

eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

$$N
ightarrow \infty$$

Moreover this regime is of interest in many applications.

Matrix model

Let $\mathbf{X}_N=(X_{ij})$ a symmetric $N\times N$ matrix with i.i.d. entries on and above the diagonal with

 $\mathbb{E}X_{ij} = 0$ and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner

matrix $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

matrix
$$\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$$

Figure: Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

matrix
$$\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$$

Wigner Matrix, N= 50

Figure: Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

matrix
$$\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$$

Figure: Histogram of the eigenvalues of \mathbf{Y}_N

Wigner Matrix, N= 100

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

matrix
$$\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$$

Figure: Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

matrix
$$\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$$

Figure: Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner

matrix $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Figure: The semi-circular distribution (in red) with density $x \mapsto \frac{\sqrt{4-x^2}}{2\pi}$

Wigner's theorem (1948)

"The histogram of a Wigner matrix converges to the semi-circular distribution"

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix \mathbf{X}_N of the same order

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ in the regime where

$$N,n\to\infty \quad \text{and} \quad \frac{N}{n}\to c\in(0,\infty)$$

dimensions of matrix \mathbf{X}_N of the same order

Wishart Matrix, N= 4 ,n= 10

Figure: Spectrum's histogram - $\frac{N}{n} = 0.7$

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix \mathbf{X}_N of the same order

Figure: Spectrum's histogram - $\frac{N}{n} = 0.7$

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix \mathbf{X}_N of the same order

Figure: Spectrum's histogram - $\frac{N}{n} = 0.7$

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ in the regime where

$$N,n\to\infty \quad \text{and} \quad \frac{N}{n}\to c\in(0,\infty)$$

dimensions of matrix \mathbf{X}_N of the same order

Wishart Matrix, N= 800 ,n= 2000

Figure: Spectrum's histogram - $\frac{N}{n} = 0.7$

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ in the regime where

$$N,n\to\infty \quad \text{and} \quad \frac{N}{n}\to c\in(0,\infty)$$

dimensions of matrix \mathbf{X}_N of the same order

Figure: Spectrum's histogram - $\frac{N}{n} = 0.7$

Large Covariance Matrices : Marčenko-Pastur's theorem

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $rac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix \mathbf{X}_N of the same order

Wishart Matrix, N= 1600 .n= 4000

Figure: Marčenko-Pastur's distribution (in red)

Marčenko-Pastur's theorem (1967)

"The histogram of a Large Covariance Matrix converges to Marčenko-Pastur distribution with given parameter (here 0.7)"

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

 $\mathbb{E} X_{ij} = 0$, $\mathbb{E} |X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N=\frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N\to\infty$

In this case, the eigenvalues are complex!

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

 $\mathbb{E} X_{ij} = 0$, $\mathbb{E} |X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N=\frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N\to\infty$

In this case, the eigenvalues are complex!

Non-hermitian matrix eigenvalues, N= 20

Figure: Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

 $\mathbb{E} X_{ij} = 0$, $\mathbb{E} |X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N = rac{1}{\sqrt{N}} \mathbf{X}_N$ as $N o \infty$

In this case, the eigenvalues are complex!

Non-hermitian matrix eigenvalues, N= 50

Figure: Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

 $\mathbb{E} X_{ij} = 0$, $\mathbb{E} |X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N=\frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N\to\infty$

In this case, the eigenvalues are complex!

Non-hermitian matrix eigenvalues, N= 100

Figure: Distribution of \mathbf{Y}_N 's eigenvalues

Large Non-Hermitian Matrices : The Circular Law

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

 $\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N=\frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N\to\infty$

In this case, the eigenvalues are complex!

Non-hermitian matrix eigenvalues, N= 200

Figure: Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

 $\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N=\frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N\to\infty$

In this case, the eigenvalues are complex!

Figure: Distribution of \mathbf{Y}_N 's eigenvalues

Non-hermitian matrix eigenvalues, N= 1000

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

 $\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$

and consider the spectrum of matrix $\mathbf{Y}_N=\frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N\to\infty$

In this case, the eigenvalues are complex!

Figure: The circular law (in red)

Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of \mathbf{Y}_N converges to the uniform probability on the disc

Motivations

An old history

- Data Analysis (Wishart, 1928)
- ▶ Theoretical Physics (from the '50s Wigner, Dyson, Pastur, etc.)
- Pure mathematics (from the late '80s non-commutative probability, free probability, operator algebra - Voiculescu, etc.)
- Graph theory (théorie spectrale des graphes)
- Wireless communication (Telatar, 1995 Verdú, Tse, Shamai, Lévêque + important french group: Loubaton, Hachem, Debbah, Couillet, N., etc.)

Current trends

- Statistics in large dimension (El Karoui, Bickel & Levina, etc.)
- Pure mathematics: universality questions, operator algebra (Tao, Vu, Erdös, Guionnet, etc.)
- Social networks, communication networks
- Neuroscience (non-hermitian models G. Wainrib)

Introduction

Large Random Matrices Aim and outline Basic technical means

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Objective of this mini-course

Objective

- ► To present emblematic results and concepts in the theory of Large Random Matrices
- To give details on the technical means
- To present motivating applications of the theory

Also ..

To demystify this theory because the technical price to enter it is substantial for a newcomer

Introduction

Large Random Matrices Aim and outline Basic technical means

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The spectral theorem

Eigenvectors and eigenvalues

Given a $N\times N$ matrix ${\bf A}$ we are interested in its eigenvalues λ

$$\mathbf{A}\vec{u} = \lambda\vec{u} \ , \quad (\vec{u} \neq 0)$$

and its associated eigenvectors \vec{u} .

The spectral theorem - complex case

if \mathbf{A} is hermitian:

$$\mathbf{A} = \mathbf{A}^* \quad \Leftrightarrow \quad [\mathbf{A}]_{ij} = \overline{[\mathbf{A}]}_{ji}$$

then A is diagonalizable with real eigenvalues:

$$\mathbf{A} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{U} \ , \quad \mathbf{U} \mathbf{U}^* = \mathbf{U}^* \mathbf{U} = \mathbf{I}_N$$

with U unitary matrix and Λ real diagonal.

The spectral theorem - real case

If \mathbf{A} is symmetric that is $\mathbf{A}=\mathbf{A}^T$, then

$$\mathbf{A} = \mathbf{O}^T \mathbf{\Lambda} \mathbf{O} \;, \quad \mathbf{O} \mathbf{O}^T = \mathbf{O}^T \mathbf{O} = \mathbf{I}_N$$

where O is (real) orthogonal.

The spectral measure of a matrix \mathbf{A}

.. also called the empirical measure of the eigenvalues

The Dirac measure

We define a **probability measure** δ_x over \mathbb{R} by

$$\delta_x([a,b]) = \begin{cases} 1 & \text{if } x \in [a,b] \\ 0 & \text{else} \end{cases}$$

otherwise stated:

A set [a,b] is assigned value 1 if $x \in [a,b]$ and value 0 else.

The spectral measure

If **A** is $N \times N$ hermitian with eigenvalues $\lambda_1, \dots, \lambda_N$ then its spectral measure is:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \qquad \Rightarrow \quad L_N([a, b]) = \frac{\#\{\lambda_i \in [a, b]\}}{N}$$

Otherwise stated

 $L_N([a, b])$ is the **proportion** of eigenvalues of **A** in [a, b].

Normalization

Given a matrix \mathbf{Y}_N with random entries, we wish to find the **right normalization** of the entries so that the **eigenvalues** (λ_i) are confined.

Loose conditions to control the eigenvalues is (for example):

$$(\mathbf{C}_{\mathbf{p}}): \quad \frac{1}{N} \sum_{i=1}^{N} \lambda_i^{\mathbf{p}} \quad = \quad O(1) \ ,$$

Normalization: example of Wigner matrices

Consider a hermitian $N \times N$ matrix $\mathbf{X}_N = (X_{ij})$ with i.i.d. entries on and above the diagonal:

$$\begin{cases} X_{ii} & \text{real} \\ X_{ij} & \text{i.i.d. if } i < j \\ X_{ij} = \overline{X}_{ji} & \text{if } i > j . \end{cases} \text{ with } \mathbb{E}X_{ij} = 0 \text{ and } \mathbb{E}|X_{ij}|^2 = \sigma^2$$

Let $\mathbf{Y}_N = \alpha_N \mathbf{X}_N$, α_N to be determined so that \mathbf{Y}_N 's eigenvalues (λ_i) are confined.

$$\begin{aligned} (\mathbf{C_1}): \quad \frac{1}{N} \sum_{i=1}^N \lambda_i &= \quad \frac{1}{N} \operatorname{Trace} \mathbf{Y}_N = \frac{\alpha_N}{N} \sum_{i=1}^N X_{ii} \quad \frac{LLN}{N \to \infty} \quad 0 \quad \text{ if } \quad \boxed{\alpha_N = O(1)} \\ (\mathbf{C_2}): \quad \frac{1}{N} \sum_{i=1}^N \lambda_i^2 &= \quad \frac{1}{N} \operatorname{Trace} \mathbf{Y}_N^2 = \frac{\alpha_N^2}{N} \operatorname{Trace} \mathbf{X}_N^2 \\ &= \quad \frac{\alpha_N^2}{N} \left\{ \sum_{i=1}^N X_{ii}^2 + 2 \sum_{i < j} |X_{ij}|^2 \right\} \quad = \quad O(1) \quad \text{ if } \quad \boxed{\alpha_N \propto \frac{1}{\sqrt{N}}} \end{aligned}$$

Definition: A Wigner matrix is a matrix $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Spectrum analysis: The historical proof of Wigner's theorem

1. Compute the asymptotic moments of the spectral distribution

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \quad \text{of} \quad \mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$$

that is

$$m_p(N) = \int x^p L_n(dx) = \frac{1}{N} \sum_{i=1}^N \lambda_i^p = \frac{1}{N} \operatorname{Trace} \mathbf{X}_N^p$$

and prove that

$$m_p(N) \xrightarrow[N \to \infty]{} \begin{cases} \frac{1}{k+1} \binom{2k}{k} & \text{if } p = 2k \ 0 & \text{if } p = 2k+1 \end{cases}$$

2. On the other hand, compute the moments of the semi-circular distribution:

$$\int_{-2}^{2} \lambda^{k} \frac{\sqrt{4-\lambda^{2}}}{2\pi} \, d\,\lambda \quad = \begin{array}{l} \left\{ \begin{array}{c} \frac{1}{k+1} \binom{2k}{k} & \text{if } p = 2k \ , \\ 0 & \text{if } p = 2k+1 \end{array} \right.$$

- Conclude: convergence of moments + tightness implies the convergence of the spectral distribution.
- ⇒ Computation of empirical moments heavily relies on (sometimes difficult) combinatorics.

Spectrum analysis: The resolvent

• Consider the equation in \vec{x} :

$$\mathbf{A}\,\vec{x} = z\,\vec{x} + \vec{b} \qquad \Leftrightarrow \qquad (\mathbf{A} - z\mathbf{I})\vec{x} = \vec{b} \qquad \Leftrightarrow \qquad \vec{x} = (\mathbf{A} - z\mathbf{I})^{-1}\vec{b}$$

if $z \notin \operatorname{spectrum}(\mathbf{A})$.

The resolvent of A is

$$\mathbf{Q}(z) = (\mathbf{A} - z\mathbf{I})^{-1}$$

- ▶ its singularities are exactly **eigenvalues** of **A**.
- Resolvent of a Hermitian matrix

$$\mathbf{A} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{U} \quad \Rightarrow \quad \mathbf{Q}(z) = \mathbf{U}^* (\mathbf{\Lambda} - z\mathbf{I})^{-1} \mathbf{U}$$

$$\mathbf{A} = \mathbf{U}^* \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_N \end{bmatrix} \mathbf{U} \quad \Rightarrow \quad \mathbf{Q}(z) = \mathbf{U}^* \begin{bmatrix} \frac{1}{\lambda_1 - z} & & \\ & \ddots & \\ & & \frac{1}{\lambda_N - z} \end{bmatrix} \mathbf{U}$$

- Problem: if size of A big, then size of Q big as well.
- The right object to consider (cf. supra) is the normalized trace of the resolvent.

Spectrum Analysis: The Stieltjes Transform I

Given a probability measure \mathbb{P} , its **Stieltjes transform** is a function

$$g(z) = \int_{\mathbb{R}} \frac{\mathbb{P}(d\lambda)}{\lambda - z} , \quad z \in \mathbb{C}^+ ,$$

with inverse formulas

$$\begin{split} \mathbb{P}[a,b] &= \quad \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_{a}^{b} g(x+\mathbf{i}y) \, dx \ , \quad \text{if } \mathbb{P}\{a\} = \mathbb{P}\{b\} = 0 \\ \int f \, d \, \mathbb{P} &= \quad \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_{\mathbb{R}} f(x) g(x+\mathbf{i}y) \, dx \ , \end{split}$$

Examples

1. Dirac measure:

$$\mathbb{P} = \delta_{\lambda_0} \quad \Rightarrow \quad g(z) = \frac{1}{\lambda_0 - z}$$

2. Spectral measure:

$$\mathbb{P} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i} \quad \Rightarrow \quad g(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i - z}$$

Spectrum Analysis: The Stieltjes Transform II

Relation with the resolvent of Large Random Matrices

Let A hermitian with eigenvalues (λ_i) and spectral measure $\frac{1}{N}\sum_{i=1}^N \delta_{\lambda_i}$. Then

$$g(z) = \text{Stieltjes transform of} \left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i}\right)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i - z}$$
$$= \frac{1}{N} \text{Trace} \left[\begin{array}{cc} \frac{1}{\lambda_1 - z} \\ & \ddots \\ & & \frac{1}{\lambda_N - z} \end{array}\right] = \frac{1}{N} \text{Trace} \left(\mathbf{A} - z\mathbf{I}\right)^{-1}$$

- ▶ The Stieltjes transfom g is the normalized trace of the resolvent $(\mathbf{A} z\mathbf{I})^{-1}$
- Whatever size of A, Stieltjes transform g remains a fonction $\mathbb{C} \to \mathbb{C}$.
Summary

Large Random Matrices

- Associated to a matrix **A** is its spectral measure: $L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(\mathbf{A})}$
- .. its resolvent: $\mathbf{Q}(z) = (\mathbf{A} z\mathbf{I}_N)^{-1}$
- ... its Stieltjes transform

$$g_n(z) = \int \frac{L_n(d\lambda)}{\lambda - z} = \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i(\mathbf{A}) - z} = \frac{1}{N} \operatorname{Trace} \mathbf{Q}(z)$$

Normalizing a matrix

In order to confine a matrix' eigenvalues, we consider the condition:

$$(\mathbf{C}_{\mathbf{p}}): \quad \frac{1}{N} \sum_{i=1}^{N} \lambda_i^{\mathbf{p}} = O(1) ,$$

Classical results

Wigner's theorem, Marčenko-Pastur's theorem, The circular law.

Introduction

Large Covariance Matrices

Wishart matrices and Marčenko-Pastur theorem

Proof of Marčenko-Pastur's theorem Large covariance matrices and deterministic equivalents

Spiked models

Statistical Test for Single-Source Detection

Wishart Matrices I

The model

• Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = \sigma^2 .$$

Matrix \mathbf{X}_N is a *n*-sample of *N*-dimensional vectors:

$$\mathbf{X}_N = [\mathbf{X}_{\cdot 1} \cdots \mathbf{X}_{\cdot n}]$$
 with $\mathbb{E}\mathbf{X}_{\cdot 1}\mathbf{X}_{\cdot 1}^* = \sigma^2 \mathbf{I}_N$.

Objective

 \blacktriangleright to describe the limiting spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ as

$$\frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0,\infty) \ .$$

i.e. dimensions of matrix \mathbf{X}_N are of the same order.

Wishart Matrices II

The usual case N << n

Assume N fixed and $n \to \infty$. Since

$$\mathbb{E}\mathbf{X}_{\cdot 1}\mathbf{X}_{\cdot 1}^* = \sigma^2 \mathbf{I}_N \; ,$$

L.L.N implies

$$\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{\cdot i}\mathbf{X}_{\cdot i}^{*} \quad \xrightarrow{a.s.}{n \to \infty} \quad \sigma^{2}\mathbf{I}_{N}$$

In particular,

- ▶ all the eigenvalues of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ converge to σ^2 ,
- equivalently, the spectral measure of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ converges to $\delta_{\sigma^{2}}$.

A priori observation # 1

If the ratio of dimensions $c\searrow 0,$ then the spectral measure should look like a Dirac measure at point $\sigma^2.$

Wishart Matrices III

The case where c > 1

Recall that \mathbf{X}_N is $N \times n$ matrix and $c = \lim \frac{N}{n}$.

If N > n, then $\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$ is rank-defficient and has rank n;

▶ in this case, eigenvalue 0 has multiplicity N - n and the spectral measure writes:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} = \frac{1}{N} \sum_{i=1}^n \delta_{\lambda_i} + \frac{N-n}{N} \delta_0$$

 \blacktriangleright The limiting spectral measure of L_N necessarily features a Dirac measure at 0:

$$\frac{N-n}{N}\delta_0 \longrightarrow \left(1-\frac{1}{c}\right)\delta_0 \quad \text{as} \quad \frac{N}{n} \to c$$

A priori observation #2

If c>1, then the limiting spectral measure will feature a Dirac measure at 0 with weight $1-\frac{1}{c}.$

Wishart Matrix, N= 900 , n= 1000 , c= 0.9

Wishart Matrix, N= 500 , n= 1000 , c= 0.5

Wishart Matrix, N= 100 , n= 1000 , c= 0.1

3.5 3.0 2.5 2.0 Density 1.5 1.0 0.5 0.0 0 1 2 3 spectrum

Wishart Matrix, N= 10 , n= 1000 , c= 0.01

Figure: Histogram of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$, $\sigma^2=1$

Marčenko-Pastur theorem

Theorem

• Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = \sigma^2$$

with N and n of the same order and L_N its spectral measure:

$$c_n \stackrel{ riangle}{=} \frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) , \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} , \quad \lambda_i = \lambda_i \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right)$$

Then almost surely (= for almost every realization)

$$L_N \xrightarrow[N,n \to \infty]{} \mathbb{P}_{\tilde{\mathrm{MP}}}$$
 in distribution

where $\mathbb{P}_{\check{\mathrm{M}}\mathrm{P}}$ is Marčenko-Pastur distribution:

$$\mathbb{P}_{\tilde{\mathrm{MP}}}(dx) = \left(1 - \frac{1}{c}\right)^+ \delta_0(dx) + \frac{\sqrt{(\lambda^+ - x)(x - \lambda^-)}}{2\pi\sigma^2 xc} \mathbf{1}_{[a,b]}(x) \, dx$$

with
$$\begin{cases} \lambda^- &= \sigma^2 (1 - \sqrt{c})^2\\ \lambda^+ &= \sigma^2 (1 + \sqrt{c})^2 \end{cases}$$

Wishart Matrix, N= 900 , n= 1000 , c= 0.9

Wishart Matrix, N= 900 , n= 1000 , c= 0.9

Figure: Marčenko-Pastur distribution for c = 0.9

Wishart Matrix, N= 500 , n= 1000 , c= 0.5

Wishart Matrix, N= 500 , n= 1000 , c= 0.5

Figure: Marčenko-Pastur distribution for c = 0.5

Wishart Matrix, N= 100 , n= 1000 , c= 0.1

Wishart Matrix, N= 100 , n= 1000 , c= 0.1

Figure: Marčenko-Pastur distribution for c = 0.1

Wishart Matrix, N= 10 , n= 1000 , c= 0.01

Figure: Histogram of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$, $\sigma^2=1$

Wishart Matrix, N= 10 , n= 1000 , c= 0.01

Figure: Marčenko-Pastur distribution for c = 0.01

- Marčenko-Pastur theorem describes the global regime of the spectrum.
- ▶ Convergence in distribution: For a given realization and every test function $\phi : \mathbb{R} \to \mathbb{R}$, the theorem states:

$$\frac{1}{N} \sum_{i=1}^{N} \phi(\lambda_i) \xrightarrow[N,n \to \infty]{} \int \phi(x) \mathbb{P}_{\tilde{\mathrm{MP}}}(dx) \ .$$

> The Dirac measure at zero is an artifact due to the dimensions of the matrix if

N > n (cf. infra).

What if $c \searrow 0$?

- If c → 0, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$$

concentrates around $\{\sigma^2\}$ and

$$\mathbb{P}_{\operatorname{\check{M}P}} \xrightarrow[c \to 0]{} \delta_{\sigma^2} .$$

In accordance with a priori information # 1

What if $c \searrow 0$?

- If c → 0, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$$

concentrates around $\{\sigma^2\}$ and

$$\mathbb{P}_{\tilde{\mathrm{MP}}} \xrightarrow[c \to 0]{} \delta_{\sigma^2}$$

In accordance with a priori information # 1

Figure: MP distribution as $c \searrow 0$

What if $c \searrow 0$?

- If c → 0, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$$

concentrates around $\{\sigma^2\}$ and

$$\mathbb{P}_{\tilde{\mathrm{MP}}} \xrightarrow[c \to 0]{} \delta_{\sigma^2}$$

In accordance with a priori information # 1

Figure: MP distribution as $c \searrow 0$

What if $c \searrow 0$?

- If c → 0, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$$

concentrates around $\{\sigma^2\}$ and

$$\mathbb{P}_{\tilde{\mathrm{MP}}} \xrightarrow[c \to 0]{} \delta_{\sigma^2}$$

In accordance with a priori information # 1

Figure: MP distribution as $c \searrow 0$

What if $c \searrow 0$?

- If c → 0, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$$

concentrates around $\{\sigma^2\}$ and

$$\mathbb{P}_{\tilde{\mathrm{MP}}} \xrightarrow[c \to 0]{} \delta_{\sigma^2}$$

In accordance with a priori information # 1

Figure: MP distribution as $c \searrow 0$

Results concerning the local regime for Wishart matrices

Convergence of extremal eigenvalues

Recall that $[\sigma^2(1-\sqrt{c})^2,\sigma^2(1+\sqrt{c})^2]$ is the support of MP distribution, then:

$$\begin{array}{ll} \lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) & \xrightarrow{\text{almost surely}} & \sigma^2 (1 + \sqrt{c})^2 \\ \lambda_{\min} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) & \xrightarrow{\text{almost surely}} & \sigma^2 (1 - \sqrt{c})^2 \end{array}$$

Fluctuations of λ_{\max} : Tracy-Widom distribution

We can fully describe the fluctuations of λ_{\max} :

$$\frac{N^{2/3}}{\Theta_N} \left\{ \lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) - \sigma^2 (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N,n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}$$

where

$$c_n = \frac{N}{n}$$
 and $\Theta_N = \sigma^2 (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1\right)^{1/3}$

Introduction

Large Covariance Matrices

Wishart matrices and Marčenko-Pastur theorem Proof of Marčenko-Pastur's theorem

Large covariance matrices and deterministic equivalents

Spiked models

Statistical Test for Single-Source Detection

Strategy of proof

Recall definition of the **Stieltjes transform** g_n :

$$g_n(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z} = \frac{1}{N} \operatorname{Trace} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1}$$

1. Convergence of the Stieltjes transform. Since

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \xrightarrow[N,n \to \infty]{} \mathbb{P}_{\tilde{\mathrm{MP}}} \quad \Longleftrightarrow \quad g_n(z) \xrightarrow[N,n \to \infty]{} ST\left(\mathbb{P}_{\tilde{\mathrm{MP}}}\right)$$

we prove the convergence of g_n .

2. After algebraic manipulations and probabilistic arguments, we prove that

$$g_n(z) = \frac{1}{\sigma^2(1-c_n) - z - z\sigma^2 c_n g_n(z)} + \varepsilon_n(z) \quad \text{with} \quad \varepsilon_n(z) \xrightarrow[N,n \to \infty]{} 0$$

3. By stability of Marčenko-Pastur's equation, g_n converges to a function g_{MP} which satisfies the fixed point equation:

$$\mathbf{g}_{\tilde{\mathrm{MP}}}(z) = \frac{1}{\sigma^2(1-c) - z - z\sigma^2 c \mathbf{g}_{\tilde{\mathrm{MP}}}(z)}$$

4. We identify $|\mathbb{P}_{\tilde{M}P} = (Stieltjes Transform)^{-1}(\mathbf{g}_{\tilde{M}P})|$

Linear Algebra I: Diagonal element of the resolvent

Let Σ_N a $N \times n$ matrix with rows $\vec{\xi_i}$ and consider the resolvent of $\Sigma_N \Sigma_N^*$:

$$\boldsymbol{\Sigma}_{N} = \begin{bmatrix} \vec{\xi}_{1} \\ \vdots \\ \vec{\xi}_{N} \end{bmatrix} \text{ and } \mathbf{Q}(z) = (\boldsymbol{\Sigma}_{N}\boldsymbol{\Sigma}_{N}^{*} - z\mathbf{I}_{N})^{-1}$$

Proposition

The diagonal element $q_{ii} = [\mathbf{Q}]_{ii}$ expresses:

$$\boxed{q_{ii}(z) = \frac{1}{-z\left(1 + \vec{\xi_i} \left(\boldsymbol{\Sigma}^*_{(i)}\boldsymbol{\Sigma}_{(i)} - z\mathbf{I}_n\right)^{-1}\vec{\xi_i^*}\right)}$$

where $\boldsymbol{\Sigma}_{(i)}$ is matrix $\boldsymbol{\Sigma}$ with row $\vec{\xi_i}$ removed:

$$\boldsymbol{\Sigma}_{(i)} = \begin{bmatrix} \vdots \\ \vec{\xi}_{i-1} \\ \vec{\xi}_{i+1} \\ \vdots \end{bmatrix}$$

Linear Algebra II: Rank-one perturbation

Let \vec{u} a $N \times 1$ vector. Notice that $|\vec{u}\vec{u}^*|$ is a rank-one $N \times N$ matrix. Proposition

• Let \mathbf{A} be a $N \times N$ matrix then:

$$\left|\frac{1}{N}\operatorname{Trace}(\mathbf{A} + \vec{u}\vec{u}^* - z\mathbf{I}_N)^{-1} - \frac{1}{N}\operatorname{Trace}(\mathbf{A} - z\mathbf{I}_N)^{-1}\right| \le \frac{1}{N\Im(z)}$$

Conclusion

Asymptotically, normalized trace of the resolvent not sensitive to rank-one perturbations.

Linear Algebra III: Stieltjes transform property

The Stieltjes transforms associated to $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ and $\frac{1}{n}\mathbf{X}_N^*\mathbf{X}_N$ write

$$g_n(z) = \frac{1}{N} \operatorname{Trace} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1} , \quad \tilde{g}_n(z) = \frac{1}{n} \operatorname{Trace} \left(\frac{1}{n} \mathbf{X}_N^* \mathbf{X}_N - z \mathbf{I}_n \right)^{-1}$$

Spectra of $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ and $\frac{1}{n}\mathbf{X}_N^*\mathbf{X}_N$ coincide up to the null eigenvalue. As an important consequence

$$\tilde{g}_n(z) = c_n g_n(z) + (1 - c_n) \left(-\frac{1}{z}\right) \qquad c_n = \frac{N}{n}$$

Proof: Let for example n > N then

spectrum
$$\left(\frac{1}{n}\mathbf{X}_{N}^{*}\mathbf{X}_{N}\right)$$
 = spectrum $\left(\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}\right) \cup \{0\}$

where 0 has multiplicity n - N. Hence

$$\tilde{g}_n(z) = \frac{1}{n} \sum_{i=1}^n \frac{1}{\lambda_i - z} = \frac{1}{n} \sum_{i=1}^N \frac{1}{\lambda_i - z} + \frac{1}{n} \sum_{i=N+1}^n \left(-\frac{1}{z}\right)$$

$$= \frac{N}{n} g_n(z) + \frac{n - N}{n} \left(-\frac{1}{z}\right) = c_n g_n(z) + (1 - c_n) \left(-\frac{1}{z}\right)$$

Probability theory: Convergence of quadratic forms

Let

$$\vec{x} = (x_1, \cdots, x_N)$$
 with $\mathbb{E}x_i = 0$ $\mathbb{E}x_i^2 = \sigma^2$

the x_i 's being i.i.d. Consider the quadratic form $\boxed{\frac{1}{N}\vec{x}\mathbf{A}\vec{x}^*}$

Proposition

Let matrix ${\bf A}$ be deterministic or independent from \vec{x}

1. then

$$\mathbb{E}_{\vec{x}}\left\{\frac{1}{N}\vec{x}\mathbf{A}\vec{x}^*\right\} = \frac{\sigma^2}{N}\mathrm{Trace}\mathbf{A}$$

2. and

$$\frac{1}{N}\vec{x}\mathbf{A}\vec{x}^* - \frac{\sigma^2}{N} \operatorname{Trace} \mathbf{A} \xrightarrow[N \to \infty]{} 0 .$$

Let's summarize ..

In order to handle the normalized trace of the resolvent (= Stieltjes transform of the associated spectral measure), four important arguments are:

Expression of the diagonal element of the resolvent

$$q_{ii}(z) = \frac{1}{-z \left(1 + \vec{\xi_i} \left(\boldsymbol{\Sigma}^*_{(i)} \boldsymbol{\Sigma}_{(i)} - z \mathbf{I}_n\right)^{-1} \vec{\xi_i^*}\right)}$$

Robustness to rank-one perturbation

$$\frac{1}{N}\operatorname{Trace}(\mathbf{A} + \vec{u}\vec{u}^* - z\mathbf{I}_N)^{-1} \approx \frac{1}{N}\operatorname{Trace}(\mathbf{A} - z\mathbf{I}_N)^{-1} \text{ as } N \to \infty$$

Stieltjes transform property

$$\tilde{g}_n(z) = c_n g_n(z) + (1 - c_n) \left(-\frac{1}{z}\right)$$

Approximation of quadratic forms

$$\frac{1}{N}\vec{x}\mathbf{A}\vec{x}^* \;\; \approx \;\; \frac{\sigma^2}{N} \operatorname{Trace}(\mathbf{A}) \quad \text{as } N \to \infty \;.$$

Approximate fixed-point equation I

Diagonal elements

Denote by

$$q_{ii}(z) = \left[\left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1} \right]_{ii} \quad \text{and} \quad \tilde{q}_{jj}(z) = \left[\left(\frac{1}{n} \mathbf{X}_N^* \mathbf{X}_N - z \mathbf{I}_n \right)^{-1} \right]_{jj}$$

the diagonal elements of the resolvents.

Stieltjes transforms

The Stieltjes transforms associated to $\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*$ and $\frac{1}{n}\mathbf{X}_N^*\mathbf{X}_N$ write

$$g_n(z) = \frac{1}{N} \operatorname{Trace} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1} = \frac{1}{N} \sum_{i=1}^N q_{ii}(z) ,$$

$$\tilde{g}_n(z) = \frac{1}{n} \operatorname{Trace} \left(\frac{1}{n} \mathbf{X}_N^* \mathbf{X}_N - z \mathbf{I}_n \right)^{-1} = \frac{1}{n} \sum_{j=1}^n \tilde{q}_{jj}(z) .$$

Approximate fixed-point equation II

For simplicity, denote by $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{n}}$ and recall

$$g_n(z) = \frac{1}{N} \operatorname{Trace} \left(\mathbf{Y}_N \mathbf{Y}_N^* - z \mathbf{I}_N \right)^{-1} = \frac{1}{N} \sum_{i=1}^N q_{ii}(z)$$

We have:

$$q_{ii}(z) \stackrel{(a)}{=} \frac{1}{-z \left(1 + \vec{\xi_i} \left(\mathbf{Y}_{(i)}^* \mathbf{Y}_{(i)} - z \mathbf{I}_n\right)^{-1} \vec{\xi_i}^*\right)} \\ \stackrel{(b)}{\approx} \frac{1}{-z \left(1 + \frac{\sigma^2}{n} \operatorname{Trace} \left(\mathbf{Y}_{(i)}^* \mathbf{Y}_{(i)} - z \mathbf{I}_n\right)^{-1}\right)} \\ \stackrel{(c)}{\approx} \frac{1}{-z \left(1 + \frac{\sigma^2}{n} \operatorname{Trace} \left(\mathbf{Y}^* \mathbf{Y} - z \mathbf{I}_n\right)^{-1}\right)} = \frac{1}{-z \left(1 + \frac{\sigma^2}{n} \sum_{j=1}^n \tilde{q}_{jj}(z)\right)}$$

- where (a) follows from the expression of the diagonal element of the resolvent,
- where (b) follows from asymptotic behaviour of quadratic form;
- where (c) follows from rank-one perturbation argument.

Approximate fixed-point equation III

 $q_{ii}(z)\approx \frac{1}{-z\left(1+\frac{\sigma^2}{n}\sum_{j=1}^n \tilde{q}_{jj}(z)\right)}=-\frac{1}{z(1+\sigma^2\tilde{g}_n(z))}$

Summing up,

We have

$$g_{n}(z) = \frac{1}{N} \sum_{i=1}^{N} q_{ii}(z) \approx -\frac{1}{z(1+\sigma^{2}\tilde{g}_{n}(z))}$$

$$\stackrel{(\underline{d})}{=} \frac{1}{-z \left[1+\sigma^{2} \left\{c_{n}g_{n}(z)+(1-c_{n})\left(-\frac{1}{z}\right)\right\}\right]}$$

$$= \frac{1}{\sigma^{2}(1-c_{n})-z-z\sigma^{2}c_{n}g_{n}(z)}$$

where (d) follows from the fact that

$$\tilde{g}_n(z) = c_n g_n(z) + (1 - c_n) \left(-\frac{1}{z}\right)$$

Approximate fixed-point equation IV

we finally obtain the approximate equation

$$g_n(z) \approx \frac{1}{\sigma^2(1-c_n) - z - z\sigma^2 c_n g_n(z)}$$

This method can be referred to as:

finding the limiting equation by approximating the diagonal elements of the resolvent
The limiting fixed-point equation

Theoretical arguments (tightness and compacity) yield the convergence

$$g_n(z) \xrightarrow[N,n \to \infty]{a.s.} \mathbf{g}_{\tilde{\mathrm{MP}}}(z)$$

where the Stieltjes transform $\mathbf{g}_{\check{\mathrm{M}}\mathrm{P}}$ satisfies the <code>fixed-point</code> equation:

$$\mathbf{g}_{\tilde{\mathrm{MP}}}(z) = \frac{1}{\sigma^2(1-c) - z - z\sigma^2 c \mathbf{g}_{\tilde{\mathrm{MP}}}(z)}$$

or equivalently the following second-degree polynomial:

$$zc\sigma^2 \mathbf{g}_{\text{MP}}^2 + [z - \sigma^2(1 - c)]\mathbf{g}_{\text{MP}} + 1 = 0 \quad .$$

• We also refer to the fixed-point equation as the **canonical equation**.

Solving the limiting equation

Explicit Stieltjes transform

Given the second-degree polynomia an explicit solution is given by

al
$$zc\sigma^2 \mathbf{g}_{\text{MP}}^2 + [z - \sigma^2(1 - c)]\mathbf{g}_{\text{MP}} + 1 = 0$$

$$\mathbf{g}_{\rm MP}(z) = \frac{-(z + \sigma^2(c-1)) + \sqrt{(z-b)(z-a)}}{2zc\sigma^2}$$

with $a = \sigma^2 (1 - \sqrt{c})^2$ and $b = \sigma^2 (1 + \sqrt{c})^2$ and where $\sqrt{(\cdot)}$ refers to the branch of the square root function for which $\mathbf{g}_{\tilde{M}P}$ is a Stieltjes transform.

Marčenko-Pastur's distribution

The inverse formula

$$\mathbb{P}_{\check{\mathrm{M}}\mathrm{P}}[a,b] = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_{a}^{b} \mathbf{g}_{\check{\mathrm{M}}\mathrm{P}}(x + \mathbf{i}y) \, dx$$

can be used to find:

$$\boxed{\mathbb{P}_{\tilde{M}P}(dx) = \left(1 - \frac{1}{c}\right)^+ \delta_0(dx) + \frac{\sqrt{(b-x)(x-a)}}{2\pi\sigma^2 xc} \mathbb{1}_{[a,b]}(x) \, dx}$$

Marčenko-Pastur's Theorem: Summary

Consider the model ¹/_nX_NX^{*}_N, then its spectral measure satisfies:

$$\text{a. s.} \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \xrightarrow[N,n \to \infty]{} \mathbb{P}_{\tilde{\mathrm{MP}}} \ .$$

• Instead of directly working on L_N , we consider its **Stieltjes tranform**

$$g_n(z) = rac{1}{N} \operatorname{Trace} \left(rac{1}{n} \mathbf{X}_N \mathbf{X}_n^* - z \mathbf{I}_N
ight)^{-1} \; ,$$

then prove that it satisfies the approximate fixed-point equation

$$g_n(z) \approx \frac{1}{\sigma^2(1-c_n) - z - z\sigma^2 c_n g_n(z)}$$

and that it converges to the solution $\mathbf{g}_{\mathrm{\check{M}}\mathrm{P}}$ of the canonical equation

$$\mathbf{g}_{\mathrm{\check{M}P}}(z) = \frac{1}{\sigma^2(1-c) - z - z\sigma^2 c \mathbf{g}_{\mathrm{\check{M}P}}(z)}$$

 \blacktriangleright Computing explicitely $\mathbf{g}_{\check{M}P}$ and inverting it yields finally the formula for $\mathbb{P}_{\check{M}P}.$

Complement: the isotropic Marčenko-Pastur theorem

▶ While proving MP's theorem, we have seen that

$$g_n(z) = \frac{1}{N} \operatorname{Trace} \mathbf{Q}_N(z) \xrightarrow[N,n \to \infty]{} \mathbf{g}_{\tilde{M}P}(z) \text{ for } z \in \mathbb{C} \setminus \mathbb{R}^+$$

Isotropic MP theorem

 \blacktriangleright let $\vec{\mathbf{a}}_N$ and $\vec{\mathbf{b}}_N$ be $N\times 1$ deterministic vectors such that

$$\sup_{n\geq 1} \|\vec{\mathbf{a}}_N\| , \ \sup_{n\geq 1} \|\vec{\mathbf{b}}_N\| \le K < \infty$$

then

$$\vec{\mathbf{a}}_N^* \mathbf{Q}_N(z) \vec{\mathbf{b}}_N - \langle \vec{\mathbf{a}}_N, \vec{\mathbf{b}}_N \rangle \mathbf{g}_{\check{\mathrm{MP}}}(z) \xrightarrow[N,n \to \infty]{} \mathrm{for} \quad z \in \mathbb{C} \setminus \mathbb{R}^+ \ ,$$

where $\langle ec{\mathbf{a}}_N, ec{\mathbf{b}}_N
angle = ec{\mathbf{a}}_N^* ec{\mathbf{b}}_N$.

▶ In particular, if $\vec{\mathbf{u}}_N$ is $N \times 1$ unitary, i.e.

$$\langle \vec{\mathbf{u}}_N, \vec{\mathbf{u}}_N \rangle = \| \vec{\mathbf{u}}_N \|^2 = 1$$

then

$$\vec{\mathbf{u}}_N^* \mathbf{Q}_N(z) \vec{\mathbf{u}}_N \xrightarrow[N,n \to \infty]{} \mathbf{g}_{MP}(z)$$
 for $z \in \mathbb{C} \setminus \mathbb{R}^+$

Hence the name isotropic: the limit does not depend on the direction $\vec{\mathbf{u}}_N$..

Introduction

Large Covariance Matrices

Wishart matrices and Marčenko-Pastur theorem Proof of Marčenko-Pastur's theorem

Large covariance matrices and deterministic equivalents

Spiked models

Statistical Test for Single-Source Detection

Large covariance matrices

The model

• Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

- Let \mathbf{R}_N be a deterministic $N \times N$ nonnegative definite hermitian matrix.
- Consider

$$\mathbf{Y}_N = \mathbf{R}_N^{1/2} \mathbf{X}_N \ .$$

Matrix \mathbf{Y}_N is a *n*-sample of *N*-dimensional vectors:

$$\mathbf{Y}_N = \begin{bmatrix} \mathbf{Y}_{\cdot 1} & \cdots & \mathbf{Y}_{\cdot n} \end{bmatrix} \text{ with } \mathbf{Y}_{\cdot 1} = \mathbf{R}_N^{1/2} \mathbf{X}_{\cdot 1} \text{ and } \mathbb{E} \mathbf{Y}_{\cdot 1} \mathbf{Y}_{\cdot 1}^* = \mathbf{R}_N \text{ }$$

R_N often called Population covariance matrix.

Objective

To describe the limiting spectrum of $\frac{1}{n}\mathbf{Y}_{N}\mathbf{Y}_{N}^{*}$ as $N,n\rightarrow\infty.$

Remark

• If N fixed and
$$n \to \infty$$
 then $\left| \frac{1}{n} \mathbf{Y}_N \mathbf{Y}_N^* \longrightarrow \mathbf{R}_N \right|$

Guessing the canonical equation I: diagonal case

• Consider first the case where \mathbf{R}_N is diagonal:

 $\mathbf{R}_N = \operatorname{diag}\left(\rho_i, \ i = 1:N\right) \ .$

Guessing the canonical equation I: diagonal case

• Consider first the case where \mathbf{R}_N is diagonal:

$$\mathbf{R}_N = \operatorname{diag}\left(\rho_i, i=1:N\right)$$
.

> The method of approximating the diagonal elements of the resolvent yields

$$g_n(z) = \frac{1}{N} \sum_{i=1}^N q_{ii}(z)$$

= $\frac{1}{N} \sum_{i=1}^N \frac{1}{(1-c_n)\rho_i - z - zc_n\rho_i g_n(z)} + \varepsilon_N$, $c_n = \frac{N}{n}$
= $\frac{1}{N} \operatorname{Trace} \left[(1-c_n) \mathbf{R}_N - z \mathbf{I}_N - zc_n g_n(z) \mathbf{R}_N \right]^{-1} + \varepsilon_N$

Guessing the canonical equation I: diagonal case

• Consider first the case where \mathbf{R}_N is diagonal:

$$\mathbf{R}_N = \operatorname{diag}\left(\rho_i, i=1:N\right)$$
.

> The method of approximating the diagonal elements of the resolvent yields

$$g_n(z) = \frac{1}{N} \sum_{i=1}^N q_{ii}(z)$$

= $\frac{1}{N} \sum_{i=1}^N \frac{1}{(1-c_n)\rho_i - z - zc_n\rho_i g_n(z)} + \varepsilon_N , \quad c_n = \frac{N}{n}$
= $\frac{1}{N} \operatorname{Trace} \left[(1-c_n) \mathbf{R}_N - z \mathbf{I}_N - zc_n g_n(z) \mathbf{R}_N \right]^{-1} + \varepsilon_N$

Hence the canonical equation (unknown \mathbf{t}_N):

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

Guessing the canonical equation II: non-diagonal cases

Gaussian entries

Assume that the entries of \mathbf{X}_N are $\mathcal{N}(0,1)$ i.i.d. and consider the spectral decomposition of matrix

$$\mathbf{R}_N = \mathbf{O}_N^* \mathbf{\Lambda}_N \mathbf{O}_N$$

Due to Gaussian unitary invariance,

spectrum
$$\left(\frac{1}{n}\mathbf{R}_{N}^{1/2}\mathbf{X}_{N}\mathbf{X}_{N}^{*}\mathbf{R}_{N}^{1/2}\right) = \operatorname{spectrum}\left(\frac{1}{n}\mathbf{\Lambda}_{N}^{1/2}\widetilde{\mathbf{X}}_{N}\widetilde{\mathbf{X}}_{N}^{*}\mathbf{\Lambda}_{N}^{1/2}\right)$$

where $\widetilde{\mathbf{X}}_N$ has $\mathcal{N}(0,1)$ i.i.d. entries. Remember $\mathcal{L}(\mathbf{X}_N) = \mathcal{L}(\mathbf{O}_N \mathbf{X}_N)!$

For Gaussian entries, sufficient to consider diagonal population covariance matrices \mathbf{R}_N

Non-Gaussian entries

- Let $\mathbf{X}_N = [\vec{\mathbf{x}}_1, \cdots, \vec{\mathbf{x}}_n]$ the matrix with non-gaussian entries
- Let $\mathbf{X}_N^{\mathcal{N}} = [\vec{\mathbf{x}}_1^{\mathcal{N}}, \cdots, \vec{\mathbf{x}}_n^{\mathcal{N}}]$ the matrix with $\mathcal{N}(0, 1)$ i.i.d. entries

Interpolate between \mathbf{X}_N and $\mathbf{X}_N^\mathcal{N}$ by changing one column at a time

• We have proved so far that the Stieltjes transform $g_n(z)$ approximately satisfies the canonical equation (unknown \mathbf{t}_N):

• We have proved so far that the Stieltjes transform $g_n(z)$ approximately satisfies the canonical equation (unknown \mathbf{t}_N):

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

• We have proved so far that the Stieltjes transform $g_n(z)$ approximately satisfies the canonical equation (unknown \mathbf{t}_N):

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

Problem: this equation depends on N!

• We have proved so far that the Stieltjes transform $g_n(z)$ approximately satisfies the canonical equation (unknown \mathbf{t}_N):

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

Problem: this equation depends on N!

Instead of having a single equation which describes the limit, we handle a sequence of equations whose solutions are refered to as **deterministic equivalents**.

Deterministic equivalents

 \blacktriangleright Let \mathbf{t}_N be the Stieltjes transform solution of the canonical equation

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

Consider associated probability \mathbb{P}_N defined by

$$\mathbb{P}_N$$
 = (Stieltjes transform)⁻¹(\mathbf{t}_N) i.e. $\mathbf{t}_N(z) = \int \frac{\mathbb{P}_N(d\lambda)}{\lambda - z}$

• Then \mathbf{t}_N and \mathbb{P}_N are the **determinitic equivalents** of g_n and L_N :

$$g_N(z) - \mathbf{t}_N(z) \quad \xrightarrow[N,n\to\infty]{a.s.} \quad 0 \ ,$$
$$\frac{1}{N} \sum_{i=1}^N f(\lambda_i) - \int f(\lambda) \mathbb{P}_N(d\,\lambda) \quad \xrightarrow[N,n\to\infty]{a.s.} \quad 0 \ ,$$

Genuine limits I

> In the case of Marčenko and Pastur, we have a single equation and a single limit

$$\mathbf{g}_{\tilde{\mathrm{MP}}}(z) = \frac{1}{\sigma^2(1-c) - z - z\sigma^2 c \mathbf{g}_{\tilde{\mathrm{MP}}}(z)}$$

▶ In the case of large covariance matrices, we have a sequence of equations:

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

and we speak of deterministic equivalents rather than genuine limits.

Notice that all these equations only depend on the spectrum of R_N; denote by

$$L_N^{\mathbf{R}} = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(\mathbf{R}_N)}$$

the spectral measure of matrix \mathbf{R}_N ; assume the following convergence:

$$L_N^{\mathbf{R}} \xrightarrow[N,n \to \infty]{a.s.} \mathbb{P}^{\mathbf{R}}$$

where $\mathbb{P}^{\mathbf{R}}$ is a given probability distribution.

Genuine limits II

Theorem

lf

$$L_N^{\mathbf{R}} \xrightarrow[N,n \to \infty]{a.s.} \mathbb{P}^{\mathbf{R}}$$

then the sequence of canonical equations "converges" to the following fixed-point equation $% \label{eq:converges} \left(f_{i}, f_$

$$\mathbf{t}(z) = \int \frac{\mathbb{P}^{\mathbf{R}}(d\,\lambda)}{(1-c)\lambda - z - zc\mathbf{t}(z)\lambda} \quad \text{where} \quad \mathbf{t}(z) = \int \frac{\mathbb{P}_{\infty}(d\,\lambda)}{\lambda - z}$$

and the following convergences hold true

$$\begin{split} g_N(z) & \xrightarrow{a.s.} & \mathbf{t}(z) \ , \\ \frac{1}{N} \sum_{i=1}^N f(\lambda_i) & \xrightarrow{a.s.} & \int f(\lambda) \mathbb{P}_\infty(d\,\lambda) \ , \end{split}$$

where the λ_i 's are the eigenvalues of $\frac{1}{n}\mathbf{Y}_N\mathbf{Y}_N^*$.

Remarks

1. In general, there is no explicit solution to the equation

$$\mathbf{t}(z) = \int \frac{\mathbb{P}^{\mathbf{R}}(d\,\lambda)}{(1-c)\lambda - z - zc\mathbf{t}(z)\lambda}$$

2. In the theory of free probability, probability measure

$$\mathbb{P}_{\infty} = (ST)^{-1}(\mathbf{t})$$

is the free multiplicative convolution of $\mathbb{P}^{\mathbf{R}}$ with $\mathbb{P}_{\check{M}P}$:

$$\mathbb{P}_{\infty}=\mathbb{P}^{\mathbf{R}}\boxtimes\mathbb{P}_{\check{\mathrm{M}}\mathrm{P}}$$

Consider the distribution

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

$$\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{P}}$$

for different values of c.

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\boldsymbol{\lambda}_1 - z - zc\mathbf{t}(z)\boldsymbol{\lambda}_1} + \frac{1}{(1-c)\boldsymbol{\lambda}_2 - z - zc\mathbf{t}(z)\boldsymbol{\lambda}_2} + \frac{1}{(1-c)\boldsymbol{\lambda}_3 - z - zc\mathbf{t}(z)\boldsymbol{\lambda}_3} \right\}$$

Large Covariance Matrices - Limiting Density (LSD)

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

 $\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{F}}$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.01\,$

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\lambda_1 - z - zc\mathbf{t}(z)\lambda_1} + \frac{1}{(1-c)\lambda_2 - z - zc\mathbf{t}(z)\lambda_2} + \frac{1}{(1-c)\lambda_3 - z - zc\mathbf{t}(z)\lambda_3} \right\}$$

Large Covariance Matrices - Limiting Density (LSD)

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

 $\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{F}}$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.1\,$

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\lambda_1 - z - zc\mathbf{t}(z)\lambda_1} + \frac{1}{(1-c)\lambda_2 - z - zc\mathbf{t}(z)\lambda_2} + \frac{1}{(1-c)\lambda_3 - z - zc\mathbf{t}(z)\lambda_3} \right\}$$

Consider the distribution

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

 $\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{F}}$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.25\,$

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\lambda_1 - z - zc\mathbf{t}(z)\lambda_1} + \frac{1}{(1-c)\lambda_2 - z - zc\mathbf{t}(z)\lambda_2} + \frac{1}{(1-c)\lambda_3 - z - zc\mathbf{t}(z)\lambda_3} \right\}$$

Large Covariance Matrices - Limiting Density (LSD)

Large Covariance Matrices - Limiting Density (LSD)

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

 $\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{F}}$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for c=0.275

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\lambda_1 - z - zc\mathbf{t}(z)\lambda_1} + \frac{1}{(1-c)\lambda_2 - z - zc\mathbf{t}(z)\lambda_2} + \frac{1}{(1-c)\lambda_3 - z - zc\mathbf{t}(z)\lambda_3} \right\}$$

Large Covariance Matrices - Limiting Density (LSD)

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

 $\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{F}}$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.35\,$

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\lambda_1 - z - zc\mathbf{t}(z)\lambda_1} + \frac{1}{(1-c)\lambda_2 - z - zc\mathbf{t}(z)\lambda_2} + \frac{1}{(1-c)\lambda_3 - z - zc\mathbf{t}(z)\lambda_3} \right\}$$

Large Covariance Matrices - Limiting Density (LSD)

$$\mathbb{P}^{\mathbf{R}} = \frac{1}{3}\delta_1 + \frac{1}{3}\delta_3 + \frac{1}{3}\delta_7$$

corresponding to a covariance matrix

 $\mathbf{R}_N = \operatorname{diag}(1, 3, 7)$

each with multiplicity $\approx \frac{N}{3}$.

We plot hereafter

$$\mathbb{P}_{\infty} = \mathbb{P}^{\mathbf{R}} \boxtimes \mathbb{P}_{\check{\mathrm{M}}\mathrm{P}}$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.6\,$

$$\mathbf{t}(z) = \frac{1}{3} \left\{ \frac{1}{(1-c)\lambda_1 - z - zc\mathbf{t}(z)\lambda_1} + \frac{1}{(1-c)\lambda_2 - z - zc\mathbf{t}(z)\lambda_2} + \frac{1}{(1-c)\lambda_3 - z - zc\mathbf{t}(z)\lambda_3} \right\}$$

Example: Marčenko-Pastur's model

In the case of Marčenko-Pastur, $\mathbf{R}_N = \sigma^2 \mathbf{I}_N$ and many things simplify:

• The deterministic equivalent of $g_n(z)$ is $\mathbf{t}_N(z)$, solution of:

$$\mathbf{t}_N(z) = \frac{1}{\sigma^2(1-c_N) - z - zc_N \sigma^2 \mathbf{t}_N(z)} \quad \text{with} \quad c_N = \frac{N}{n} \; .$$

 \blacktriangleright The deterministic equivalent of $L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ is

$$\mathbb{P}^{N}_{\text{MP}}(dx) = \left(1 - \frac{1}{c_{N}}\right)^{+} \delta_{0}(dx) + \frac{\sqrt{(b_{N} - x)(x - a_{N})}}{2\pi\sigma^{2}xc_{N}} \mathbf{1}_{[a,b]}(x) \, dx$$

with $a_N=\sigma^2(1-\sqrt{c_N})^2$ and $b_N=\sigma^2(1+\sqrt{c_N})^2$.

• Of course, all the genuine limits are obtained by replacing $c_N = \frac{N}{n}$ by $c = \lim \frac{N}{n}$.

Summary

Consider Large Covariance Matrices

$$\frac{1}{n}\mathbf{Y}_N\mathbf{Y}_N^*$$
 with $\mathbf{Y}_N = \mathbf{R}_N^{1/2}\mathbf{X}_N$

which model n samples of of N-dimensional observations $\mathbf{Y}_{\cdot i}$ with covariance

$$\operatorname{cov}(\mathbf{Y}_{\cdot i}) = \mathbf{R}_N$$
.

in the large dimensional regime where $N \propto n$

> The spectrum is described by a sequence of fixed-point equations

$$\mathbf{t}_N(z) = \frac{1}{N} \operatorname{Trace} \left[(1 - c_n) \mathbf{R}_N - z \mathbf{I}_N - z c_n \mathbf{t}_N(z) \mathbf{R}_N \right]^{-1}$$

and we consider the associated deterministic equivalents

$$g_n(z) \sim \mathbf{t}_N(z)$$
, $\mathbb{P}_N = (ST)^{-1}(\mathbf{t}_N) \sim L_N$,

 \blacktriangleright If the spectrum of \mathbf{R}_N converges, we end up with a single fixed-point equation

$$\mathbf{t}(z) = \int \frac{\mathbb{P}^{\mathbf{R}}(d\,\lambda)}{(1-c)\lambda - z - zc\mathbf{t}(z)\lambda}$$

and genuine limits $g_n(z) \to \mathbf{t}(z)$ and $L_N \to (ST)^{-1}(\mathbf{t})$.

Introduction

Large Covariance Matrices

Spiked models

Introduction and objective

The limiting spectral measure The largest eigenvalue Spiked model eigenvectors Spiked models: Summary

Statistical Test for Single-Source Detection

Introduction

The largest eigenvalue in MP model

Given a $N\times n$ matrix \mathbf{X}_N with i.i.d. entries $\mathbb{E} X_{ij}=0$ and $\mathbb{E} |X_{ij}|^2=\sigma^2$,

$$L_N\left(\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*\right) \xrightarrow[N,n \to \infty]{} \mathbb{P}_{\tilde{\mathrm{MP}}}$$

where $\mathbb{P}_{\check{\mathrm{M}}\mathrm{P}}$ has support

$$S_{MP} = \{0\} \cup [\sigma^2 (1 - \sqrt{c})^2, \sigma^2 (1 + \sqrt{c})^2]$$

(remove the set $\{0\}$ if c < 1)

Theorem

• Let $\mathbb{E}|X_{ij}|^4 < \infty$, then:

$$\lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2 (1 + \sqrt{c})^2 \ .$$

Message: The largest eigenvalue converges to the right edge of the bulk.

Spiked Models I

Definition

Let Π_N be a small perturbation of the identity:

 $\mathbf{\Pi}_N = \mathbf{I}_N + \mathbf{P}_N \quad \text{where} \quad \mathbf{P}_N = \theta_1 \vec{\mathbf{u}}_1 \vec{\mathbf{u}}_1^* + \dots + \theta_k \vec{\mathbf{u}}_k \vec{\mathbf{u}}_k^*$

where k is independent of the dimensions N, n. Consider

$$\tilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N$$

This model will be refered to as a (multiplicative) spiked model. Think of $\mathbf{\Pi}_N$ as

$$\Pi_N = \left(\begin{array}{cccc} 1 + \theta_1 & & & \\ & \ddots & & \\ & & 1 + \theta_k & & \\ & & & 1 & \\ & & & & \ddots \end{array} \right)$$

Very important: The number k of perturbations is finite

Spiked Models II

Remarks

> The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

- ▶ There are additive spiked models: $\mathbf{\check{X}}_N = \mathbf{X}_N + \mathbf{A}_N$ where \mathbf{A}_N is a matrix with finite rank.
- > Spiked models have been introduced by Iain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.

to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of Π_N over $L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$?
- What is the influence of Π_N over $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$?

Spiked Models II

Remarks

> The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

- ▶ There are additive spiked models: $\mathbf{\check{X}}_N = \mathbf{X}_N + \mathbf{A}_N$ where \mathbf{A}_N is a matrix with finite rank.
- > Spiked models have been introduced by Iain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.

to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of Π_N over $L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$? None!
- What is the influence of Π_N over $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$?

Spiked Models II

Remarks

> The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

- ▶ There are additive spiked models: $\mathbf{\check{X}}_N = \mathbf{X}_N + \mathbf{A}_N$ where \mathbf{A}_N is a matrix with finite rank.
- > Spiked models have been introduced by Iain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.

to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of Π_N over $L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$? None!
- What is the influence of Π_N over $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$? Well, it depends!

Simulations I: Single spikes

Simulations I: Single spikes

Figure: Spiked model - strength of the perturbation $\theta = 0.1$

Simulations I: Single spikes

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[0.5]

Figure: Spiked model - strength of the perturbation $\theta = 0.5$
Simulations I: Single spikes

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[1]

Figure: Spiked model - strength of the perturbation $\theta = 1$

Simulations I: Single spikes

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[2]

Figure: Spiked model - strength of the perturbation $\theta = 2$

Simulations I: Single spikes

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[3]

Figure: Spiked model - strength of the perturbation $\theta = 3$

Observation #1

If the strength θ of the perturbation \mathbf{P}_N is large enough, then the limit of $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$ is strictly larger than the right edge of the bulk.

Figure: Spiked model - strength of the perturbation $\theta = 0.1$

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[0.5]

Figure: Spiked model - strength of the perturbation $\theta = 0.5$

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[1]

Figure: Spiked model - strength of the perturbation $\theta = 1$

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[2]

Figure: Spiked model - strength of the perturbation $\theta = 2$

0.8 0.6 Density 0.4 0.2 0.0 1 2 0 3 spectrum

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[3]

Figure: Spiked model - strength of the perturbation $\theta = 3$

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[2,2.5]

Figure: Spiked model - Two spikes

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[2,2.5]

Figure: Spiked model - Two spikes

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[2,2.3,2.8]

Figure: Spiked model - Three spikes

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[2,2.3,2.8]

Figure: Spiked model - Three spikes

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[2,2.5,2.5,3]

Figure: Spiked model - Multiple spikes

0.8 0.6 Density 0.4 0.2 0.0 1 2 0 3 spectrum

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[2,2.5,2.5,3]

Figure: Spiked model - Multiple spikes

Whathever the perturbations, the spectral measure converges toward Marčenko-Pastur distribution

Introduction

Large Covariance Matrices

Spiked models

Introduction and objective The limiting spectral measure The largest eigenvalue Spiked model eigenvectors

Spiked models: Summary

Statistical Test for Single-Source Detection

The limiting spectral measure I

Theorem

The following convergence holds true:

$$L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n \to \infty]{a.s.} \mathbb{P}_{\tilde{\mathrm{MP}}}$$
.

Remark

The limiting spectral measure is not sensitive to the presence of spikes

The limiting spectral measure II

Proof

The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

Consider the spectral measure of \mathbf{R}_N (orthogonal eigenvectors for the perturbations assumed):

$$L_N^{\mathbf{R}} = \frac{1}{N} \sum_{i=1}^k \delta_{1+\theta_i} + \frac{1}{N} \sum_{i=k+1}^N \delta_1 \xrightarrow[N,n \to \infty]{} \mathbb{P}^{\mathbf{R}} = \delta_1$$

hence the limiting canonical equation

$$\mathbf{t}(z) = \int \frac{\mathbb{P}^{\mathbf{R}}(d\lambda)}{(1-c)\lambda - z - zc\mathbf{t}(z)\lambda} = \frac{1}{(1-c) - z - zc\mathbf{t}(z)}$$
$$\Leftrightarrow \quad \boxed{zc\mathbf{t}^2 + [z - (1-c)]\mathbf{t} + 1 = 0}$$

⇒ We recognize Marčenko-Pastur canonical equation.

Introduction

Large Covariance Matrices

Spiked models

Introduction and objective The limiting spectral measure **The largest eigenvalue** Spiked model eigenvectors Spiked models: Summary

Statistical Test for Single-Source Detection

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \text{ with } \|\vec{\mathbf{u}}\| = 1.$$

which corresponds to a rank-one perturbation.

Theorem

Recall that
$$c = \lim_{N,n\to\infty} \frac{N}{n}$$
.
• if $\theta \le \sqrt{c}$ then
 $\lambda_{\max} = \lambda_{\max} \left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n\to\infty]{a.s.} \sigma^2 (1+\sqrt{c})^2$
• if $\theta > \sqrt{c}$ then
 $\lambda_{\max} \xrightarrow[N,n\to\infty]{a.s.} \sigma^2 (1+\theta) \left(1+\frac{c}{\theta}\right) > \sigma^2 (1+\sqrt{c})^2$

limit of lambda_max as a function of theta

Figure: Limit of largest eigenvalue λ_{\max} as a function of the perturbation heta

limit of lambda_max as a function of theta

Figure: Limit of largest eigenvalue λ_{\max} as a function of the perturbation heta

 $\blacktriangleright~$ If $\theta \leq \sqrt{c}$ then

$$\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n\to\infty]{} \sigma^2(1+\sqrt{c})^2$$

limit of lambda_max as a function of theta

Figure: Limit of largest eigenvalue λ_{\max} as a function of the perturbation heta

 $\blacktriangleright~ \mbox{If}~ \theta \leq \sqrt{c}~ \mbox{then}$

$$\lambda_{\max} \left(rac{1}{n} ilde{\mathbf{X}}_N ilde{\mathbf{X}}_N^*
ight) \quad \xrightarrow[N,n o \infty]{} \sigma^2 (1 + \sqrt{c})^2 \; .$$

Below the threshold \sqrt{c} , $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$ asymptotically sticks to the bulk.

limit of lambda_max as a function of theta

Figure: Limit of largest eigenvalue λ_{\max} as a function of the perturbation heta

limit of lambda_max as a function of theta

Figure: Limit of largest eigenvalue λ_{\max} as a function of the perturbation heta

▶ if $\theta > \sqrt{c}$ then

$$\lim_{N,n} \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) = \sigma^2 (1+\theta) \left(1 + \frac{c}{\theta} \right)$$

limit of lambda_max as a function of theta

Figure: Limit of largest eigenvalue λ_{\max} as a function of the perturbation heta

 \blacktriangleright if $\theta > \sqrt{c}$ then

$$\lim_{N,n} \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) = \sigma^2 (1+\theta) \left(1 + \frac{c}{\theta} \right) > \sigma^2 \left(1 + \sqrt{c} \right)^2$$

Above the threshold \sqrt{c} , $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$ asymptotically separates from the bulk.

Strategy of proof

1. We first express a condition for which

$$\lambda_{\max}\left(rac{1}{n} ilde{\mathbf{X}}_N ilde{\mathbf{X}}_N^*
ight)$$

separates from the bulk and refer to it as the determinant condition

2. Relying on Large Random Matrix theory, we simplify this condition and obtain

the asymptotic condition

3. We finally conclude, obtain the condition $\left| \theta > \sqrt{c} \right|$ for which the limit of $\lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right)$ separates from the bulk, and compute this limit.

Notations

Marčenko-Pastur model

$$\mathbf{Z}_N = \frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$$
 and $\mathbf{Q}_N(z) = (-z \mathbf{I}_N + \mathbf{Y}_N)^{-1}$

Spiked model

$$\tilde{\mathbf{X}}_N = \mathbf{\Pi}^{1/2} \mathbf{X}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N$$
 and $\tilde{\mathbf{Z}}_N = \frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^*$

We wish to find

• λ^{θ} eigenvalue of the spiked model

$$ilde{\mathbf{Z}}_N = rac{1}{n} \mathbf{\Pi}^{1/2} \mathbf{X}_N \mathbf{X}_N^* \mathbf{\Pi}^{1/2}$$

• λ^{θ} not an eigenvalue of MP model

$$\mathbf{Z}_N = \frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$$

Otherwise stated

$$\det\left(-\lambda^{\theta}\mathbf{I}_{N}+\tilde{\mathbf{Z}}_{N}\right)=0\qquad\qquad \mathbf{but}\qquad \det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{Z}_{N}\right)\neq0$$

Inverse of a rank-one perturbation of the identity

Recall that

$$\mathbf{\Pi}_N = \mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*$$

Standard results from linear algebra yield

$$\mathbf{\Pi}_N^{-1} = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{-1} = \mathbf{I}_N - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^*$$

$$\det\left(-\lambda^{\theta}\mathbf{I}_{N}+\tilde{\mathbf{Z}}_{N}\right)=0 \quad \Leftrightarrow \quad \det\left(-\lambda^{\theta}\mathbf{I}_{N}+\boldsymbol{\Pi}_{N}^{1/2}\mathbf{Z}_{N}\boldsymbol{\Pi}_{N}^{1/2}\right)=0$$

$$\det\left(-\lambda^{\theta}\mathbf{I}_{N}+\tilde{\mathbf{Z}}_{N}\right)=0 \quad \Leftrightarrow \quad \det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{\Pi}_{N}^{1/2}\mathbf{Z}_{N}\mathbf{\Pi}_{N}^{1/2}\right)=0$$
$$\Leftrightarrow \quad \det\left(-\lambda^{\theta}\mathbf{\Pi}_{N}^{-1}+\mathbf{Z}_{N}\right)=0$$

$$det\left(-\lambda^{\theta}\mathbf{I}_{N}+\tilde{\mathbf{Z}}_{N}\right)=0 \quad \Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{\Pi}_{N}^{1/2}\mathbf{Z}_{N}\mathbf{\Pi}_{N}^{1/2}\right)=0$$
$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{\Pi}_{N}^{-1}+\mathbf{Z}_{N}\right)=0$$
$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\left(\mathbf{I}_{N}-\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)+\mathbf{Z}_{N}\right)=0$$

$$det \left(-\lambda^{\theta} \mathbf{I}_{N} + \tilde{\mathbf{Z}}_{N}\right) = 0 \quad \Leftrightarrow \quad det \left(-\lambda^{\theta} \mathbf{I}_{N} + \mathbf{\Pi}_{N}^{1/2} \mathbf{Z}_{N} \mathbf{\Pi}_{N}^{1/2}\right) = 0$$
$$\Leftrightarrow \quad det \left(-\lambda^{\theta} \mathbf{\Pi}_{N}^{-1} + \mathbf{Z}_{N}\right) = 0$$
$$\Leftrightarrow \quad det \left(-\lambda^{\theta} \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*}\right) + \mathbf{Z}_{N}\right) = 0$$
$$\Leftrightarrow \quad det \left(-\lambda^{\theta} \mathbf{I}_{N} + \mathbf{Z}_{N} + \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*}\right) = 0$$

$$det\left(-\lambda^{\theta}\mathbf{I}_{N}+\tilde{\mathbf{Z}}_{N}\right)=0 \quad \Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{\Pi}_{N}^{1/2}\mathbf{Z}_{N}\mathbf{\Pi}_{N}^{1/2}\right)=0$$

$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{\Pi}_{N}^{-1}+\mathbf{Z}_{N}\right)=0$$

$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\left(\mathbf{I}_{N}-\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)+\mathbf{Z}_{N}\right)=0$$

$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{Z}_{N}+\lambda^{\theta}\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)=0$$

$$\Leftrightarrow \quad det\left[\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{Z}_{N}\right)\left(\mathbf{I}_{N}+\lambda^{\theta}\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\mathbf{Q}_{N}(\lambda^{\theta})\right)\right]=0$$
The determinant condition II

Let's go for **simple** computations:

$$det\left(-\lambda^{\theta}\mathbf{I}_{N}+\tilde{\mathbf{Z}}_{N}\right)=0 \quad \Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{\Pi}_{N}^{1/2}\mathbf{Z}_{N}\mathbf{\Pi}_{N}^{1/2}\right)=0$$

$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{\Pi}_{N}^{-1}+\mathbf{Z}_{N}\right)=0$$

$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\left(\mathbf{I}_{N}-\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)+\mathbf{Z}_{N}\right)=0$$

$$\Leftrightarrow \quad det\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{Z}_{N}+\lambda^{\theta}\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)=0$$

$$\Leftrightarrow \quad det\left[\left(-\lambda^{\theta}\mathbf{I}_{N}+\mathbf{Z}_{N}\right)\left(\mathbf{I}_{N}+\lambda^{\theta}\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\mathbf{Q}_{N}(\lambda^{\theta})\right)\right]=0$$

$$\Leftrightarrow \quad det\left[\mathbf{I}_{N}+\lambda^{\theta}\frac{\theta}{1+\theta}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\mathbf{Q}_{N}(\lambda^{\theta})\right]=0$$

The determinant condition II

Let's go for simple computations:

$$det \left(-\lambda^{\theta} \mathbf{I}_{N} + \tilde{\mathbf{Z}}_{N}\right) = 0 \quad \Leftrightarrow \quad det \left(-\lambda^{\theta} \mathbf{I}_{N} + \mathbf{\Pi}_{N}^{1/2} \mathbf{Z}_{N} \mathbf{\Pi}_{N}^{1/2}\right) = 0$$

$$\Leftrightarrow \quad det \left(-\lambda^{\theta} \mathbf{\Pi}_{N}^{-1} + \mathbf{Z}_{N}\right) = 0$$

$$\Leftrightarrow \quad det \left(-\lambda^{\theta} \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*}\right) + \mathbf{Z}_{N}\right) = 0$$

$$\Leftrightarrow \quad det \left(-\lambda^{\theta} \mathbf{I}_{N} + \mathbf{Z}_{N} + \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*}\right) = 0$$

$$\Leftrightarrow \quad det \left[\left(-\lambda^{\theta} \mathbf{I}_{N} + \mathbf{Z}_{N}\right) \left(\mathbf{I}_{N} + \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \mathbf{Q}_{N}(\lambda^{\theta})\right)\right] = 0$$

$$\Leftrightarrow \quad det \left[\mathbf{I}_{N} + \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \mathbf{Q}_{N}(\lambda^{\theta})\right] = 0$$

Interest of this expression

In this equation, perturbation features θ and \vec{u} are separated from the resolvent of MP model (non-spiked model)

The determinant condition III

Recall the condition

$$\det\left[\mathbf{I}_N + \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta})\right] = 0$$

Matrix

$$\lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta})$$

▶ has rank one,

▶ admits necessarily eigenvalue -1 (and eigenvalue 0 with multiplicity N − 1)

Hence the determinant condition writes

$$\det \left[\mathbf{I}_N + \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta}) \right] = 0$$

$$\Leftrightarrow \quad \operatorname{Trace} \left\{ \lambda^{\theta} \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta}) \right\} = -1$$

$$\Leftrightarrow \quad \left[\lambda^{\theta} \vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta}) \vec{\mathbf{u}} = -\frac{1+\theta}{\theta} \right]$$

The asymptotic condition I

Recall the condition

$$\lambda^{\theta} \vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta}) \vec{\mathbf{u}} = -\frac{1+\theta}{\theta}$$

Asymptotic simplification

$$\vec{\mathbf{u}}^* \mathbf{Q}_N(\lambda^{\theta}) \vec{\mathbf{u}} \xrightarrow[N,n \to \infty]{} \mathbf{g}_{\mathrm{MP}} \left(\lambda^{\theta} \right) \ .$$

Hence the final form of the condition

$$\lambda^{ heta} \mathbf{g}_{ ext{MP}} \left(\lambda^{ heta}
ight) = -rac{1+ heta}{ heta}$$

The asymptotic condition II

• We introduce the following function $\rho(z)$:

$$\rho(z) = 1 + z \, g(z)$$

 \blacktriangleright Let $\rho_{\check{\mathrm{M}}\mathrm{P}}$ associated to the Stieltjes transform:

$$\rho_{\tilde{\mathrm{MP}}}(z) = 1 + z \mathbf{g}_{\tilde{\mathrm{MP}}}(z) \; .$$

Then the condition over λ^{θ} writes:

$$\lambda^{\theta} \mathbf{g}_{\tilde{\mathrm{MP}}} \left(\lambda^{\theta} \right) = -\frac{1+\theta}{\theta} \quad \Leftrightarrow \quad \rho_{\tilde{\mathrm{MP}}} \left(\lambda^{\theta} \right) - 1 = -\frac{1+\theta}{\theta}$$
$$\Leftrightarrow \qquad \left[\rho_{\tilde{\mathrm{MP}}} \left(\lambda^{\theta} \right) = -\frac{1}{\theta} \right]$$

The asymptotic condition III

Plot of rho_MP

Figure: Plot of ρ_{MP} on $(\sigma^2(1+\sqrt{c})^2,\infty)$

The function $\rho_{\check{\mathrm{MP}}}$ admits an explicit expression on $(\sigma^2(1+\sqrt{c})^2,\infty)$

$$\rho_{\tilde{\mathrm{MP}}}(x) = 1 + \frac{1}{2c} \left\{ (1 - x - c) + \sqrt{(1 - x - c)^2 - 4cx} \right\} \quad (\sigma^2 = 1)$$

The asymptotic condition III

Plot of rho_MP

Figure: Plot of $\rho_{\check{\mathrm{M}}\mathrm{P}}$ on $(\sigma^2(1+\sqrt{c})^2,\infty)$

The asymptotic condition is satisfied if

$$\rho_{\rm MP}\left(\lambda^{\theta}\right) = -\frac{1}{\theta} \quad \Leftrightarrow \quad -\frac{1}{\theta} > -\frac{1}{\sqrt{c}} \quad \Leftrightarrow \quad \boxed{\theta > \sqrt{c}}$$

Computing the limit λ^{θ}

We have

$$\rho_{\tilde{\mathrm{MP}}}\left(\lambda^{\theta}\right) = -\frac{1}{\theta} \quad \Leftrightarrow \quad \left|\lambda^{\theta} = \rho_{\tilde{\mathrm{MP}}}^{-1}\left(-\frac{1}{\theta}\right)\right|$$

We therefore need to inverse ρ_{MP} .

 \blacktriangleright Using Marčenko-Pastur equation and the relation between ${\bf g}_{\check{\rm M}{\rm P}}$ and $\rho_{\check{\rm M}{\rm P}}$

$$\begin{aligned} \mathbf{g}_{\check{\mathbf{M}}\mathbf{P}}(z) &= \frac{1}{\sigma^2(1-c)-z-z\sigma^2c\mathbf{g}_{\check{\mathbf{M}}\mathbf{P}}(z)}\\ \rho_{\check{\mathbf{M}}\mathbf{P}}(z) &= 1+z\mathbf{g}_{\check{\mathbf{M}}\mathbf{P}}(z) \end{aligned}$$

we get

$$z = \frac{\sigma^2}{\rho_{\tilde{\mathrm{MP}}}(z)} \left(\rho_{\tilde{\mathrm{MP}}}(z) - 1 \right) \left(1 - c \rho_{\tilde{\mathrm{MP}}}(z) \right)$$

▶ Replacing now $z = \rho_{\tilde{M}P}^{-1}\left(-\frac{1}{\theta}\right)$ into the equation yields:

$$\lambda^{\theta} = \rho_{\tilde{\mathrm{MP}}}^{-1} \left(-\frac{1}{\theta} \right) = \sigma^2 (1+\theta) \left(1 + \frac{c}{\theta} \right)$$

Introduction

Large Covariance Matrices

Spiked models

Introduction and objective The limiting spectral measure The largest eigenvalue Spiked model eigenvectors

Spiked models: Summary

Statistical Test for Single-Source Detection

Spiked model eigenvectors I

• Consider the following $N \times n$ spiked model:

$$\begin{split} \tilde{\mathbf{X}}_N &= (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \, \mathbf{X}_N \quad \text{with} \quad \|\vec{\mathbf{u}}\| = 1 \; , \\ &= \; \mathbf{\Pi}^{1/2} \mathbf{X}_N \end{split}$$

where \mathbf{X}_N has i.i.d. $0/\sigma^2$ entries.

Let v
^{*}_{max} be the eigenvector associated to λ_{max}, the largest eigenvalue of the covariance matrix associated to X
^{*}_N:

$$\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)ec{v}_{\max} = \lambda_{\max}ec{v}_{\max}$$

Question

 \blacktriangleright What is the behavior of $ec{v}_{\max}$ as $N,n \rightarrow \infty$ in the regime where

$$\frac{N}{n} \to c \in (0,\infty)?$$

Reminder

Behaviour of largest eigenvalue λ_{\max} well-understood:

Spiked model eigenvectors II

Preliminary observations

1. Let N finite, $n \to \infty$, then

$$\frac{1}{n}\tilde{\mathbf{X}}_{N}\tilde{\mathbf{X}}_{N}^{*} = \mathbf{\Pi}^{1/2}\left(\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}\right)\mathbf{\Pi}^{1/2} \xrightarrow[n \to \infty]{} \mathbf{\Pi}^{1/2}$$

Largest eigenvalue of Π is $1 + \theta$; associated eigenvector is $\vec{\mathbf{u}}$:

$$\mathbf{\Pi}\vec{\mathbf{u}} = (\mathbf{I}_N + \theta\vec{\mathbf{u}}\vec{\mathbf{u}}^*)\,\vec{\mathbf{u}} = (1+\theta)\vec{\mathbf{u}}\,.$$

As a consequence:

$$ec{v}_{ ext{max}} \xrightarrow[n
ightarrow ec{u}]{} ec{v}_{ ext{max}}$$

2. If

$$N, n \to \infty$$
, $\frac{N}{n} \to c$,

then $\dim(\vec{v}_{\max}) = N \nearrow \infty$. We therefore consider the projection

 $ec{v}_{ ext{max}}ec{v}^*_{ ext{max}}$

on $ec{v}_{\max}$ on a generic deterministic vector $ec{a}_N$, i.e.

$$oldsymbol{a}_N^* oldsymbol{v}_{ ext{max}} oldsymbol{v}_{ ext{max}}^* oldsymbol{a}_N$$

Spiked model eigenvectors III

Theorem

Let \vec{a}_N be a deterministic vector with norm 1, then

$$oldsymbol{a}_N^* oldsymbol{v}_{\max} oldsymbol{v}_{\max}^* oldsymbol{a}_N - \left(1 - rac{c}{ heta^2}
ight) \left(1 + rac{c}{ heta}
ight)^{-1} oldsymbol{a}_N^* oldsymbol{u} oldsymbol{u}^* oldsymbol{a}_N \; rac{a.s.}{N,n
ightarrow \infty} \; 0 \; .$$

Remarks

▶ If N finite, $n \to \infty$, then

$$oldsymbol{ec{a}}_N^*oldsymbol{ec{v}}_{\max}oldsymbol{ec{v}}_{\max}oldsymbol{ec{a}}_N-oldsymbol{ec{a}}_N^*oldsymbol{ec{u}}_{\mathbbm}^*oldsymbol{ec{a}}_N \xrightarrow{a.s.}{N,n
ightarrow\infty} 0 \;.$$

 \blacktriangleright The large dimension $\frac{N}{n} \rightarrow c$ induces a correction factor:

$$\kappa(c) = \left(1 - \frac{c}{\theta^2}\right) \left(1 + \frac{c}{\theta}\right)^{-1}$$

 $\blacktriangleright \ \ {\rm Of \ course} \ \kappa(c) \to 1 \ {\rm if} \ c \to 0.$

Reminder from complex analysis

We need a simple result from complex analysis:

$$\frac{1}{2i\pi}\oint_{\mathcal{C}^-}\frac{dz}{z}=1$$

if \mathcal{C}^- is a contour (take a circle of radius 1) enclosing counterclockwise 0.

Proof:

$$\text{let } z = e^{i\theta}: \qquad \frac{1}{2i\pi} \oint_{\mathcal{C}^-} \frac{dz}{z} = \frac{1}{2i\pi} \int_0^{2\pi} \frac{d(e^{i\theta})}{e^{i\theta}} = \frac{1}{2i\pi} \int_0^{2\pi} \frac{ie^{i\theta}d\theta}{e^{i\theta}} = 1$$

In particular, if C^+ is a contour enclosing λ clockwise, then:

$$\frac{1}{2i\pi}\oint_{\mathcal{C}^+}\frac{dz}{\lambda-z}=1$$

(let C^+ be a circle $(\lambda + \rho e^{i\theta}; 0 \le \theta \le 2\pi)$ and perform a change of variable). If C^+ does not enclose λ , then the integral equals zero.

Proof II

Our objective

To express
$$ec{v}_{\max}$$
 with the help of the **resolvent** $ilde{\mathbf{Q}}_n(z) = \left(rac{1}{n} ilde{\mathbf{X}}_N ilde{\mathbf{X}}_N^* - z\mathbf{I}_N
ight)^{-1}$

By the spectral theorem,

1

$$\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*} = O_{N} \begin{pmatrix} \lambda_{\max} & & \\ & \ddots & \\ & & \lambda_{N} \end{pmatrix} O_{N}^{*}$$
$$= [\vec{v}_{\max} O_{N-1}] \begin{pmatrix} \lambda_{\max} & & \\ & \ddots & \\ & & \lambda_{N} \end{pmatrix} \begin{bmatrix} \vec{v}_{\max}^{*} \\ O_{N-1}^{*} \end{bmatrix}$$

In particular,

$$\left(\frac{1}{n}\tilde{\mathbf{X}}_{N}\tilde{\mathbf{X}}_{N}^{*}-z\mathbf{I}_{N}\right)^{-1} = \left[\vec{v}_{\max} \ \boldsymbol{O}_{N-1}\right] \left(\begin{array}{ccc} \frac{1}{\lambda_{\max}-z} & & \\ & \ddots & \\ & & \frac{1}{\lambda_{N}-z} \end{array}\right) \left[\begin{array}{c} \vec{v}_{\max}^{*} \\ \boldsymbol{O}_{N-1}^{*} \end{array}\right]$$

Recall that

• if $\theta > \sqrt{c}$, λ_{\max} separates from the bulk

and consider a contour C^+ exclusively enclosing the eigenvalue λ_{\max} .

Proof III

We have

$$\left| \vec{a}_N^* \vec{v}_{\max} \vec{v}_{\max}^* \vec{a}_N = rac{1}{2i\pi} \oint_{\mathcal{C}^+} \vec{a}_N^* \tilde{Q}_n(z) \vec{a}_N \, dz
ight|$$

Indeed,

$$\frac{1}{2i\pi} \oint_{\mathcal{C}^+} \vec{a}_N^* \tilde{Q}_n(z) \vec{a}_N dz$$

$$= \frac{1}{2i\pi} \oint_{\mathcal{C}^+} \vec{a}_N^* [\vec{v}_{\max} \ O_{N-1}] \begin{pmatrix} \frac{1}{\lambda_{\max} - z} & & \\ & \ddots & \\ & & \frac{1}{\lambda_{N-z}} \end{pmatrix} \begin{bmatrix} \vec{v}_{\max}^* & \\ O_{N-1}^* \end{bmatrix} \vec{a}_N dz$$

$$= \vec{a}_N^* [\vec{v}_{\max} \ O_{N-1}] \begin{pmatrix} \frac{1}{2i\pi} \oint \frac{1}{\lambda_{\max} - z} dz & & \\ & \ddots & \\ & & \frac{1}{2i\pi} \oint \frac{1}{\lambda_{N-z}} dz \end{pmatrix} \begin{bmatrix} \vec{v}_{\max}^* & \\ O_{N-1}^* \end{bmatrix} \vec{a}_N$$

$$= \vec{a}_N^* [\vec{v}_{\max} \ O_{N-1}] \begin{pmatrix} 1 & \\ & \ddots & \\ & & 0 \end{pmatrix} \begin{bmatrix} \vec{v}_{\max}^* & \\ O_{N-1}^* \end{bmatrix} \vec{a}_N$$

$$= \vec{a}_N^* \vec{v}_{\max} \vec{v}_{\max}^* \vec{a}_N .$$

Recall

$$\frac{1}{2i\pi} \oint_{\mathcal{C}^+} \vec{a}_N^* \tilde{\mathbf{Q}}_n(z) \vec{a}_N \, dz$$

and temporarily forget about the integral. Our objective now is:

to find a new formulation of $\vec{a}_N^* \tilde{Q}_n(z) \vec{a}_N$ and clearly separate the contribution from the perturbation (\vec{u} and θ) and the resolvent $\mathbf{Q}_n(z)$ from the non-pertubated model.

Introduce the notations

$$\mathbf{Z}_N = \frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$$
 and $\tilde{\mathbf{Z}}_N = \frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^*$

and recall the formula for the inverse of a rank-one perturbation:

$$(\mathbf{A} + \vec{\mathbf{u}}\vec{\mathbf{u}}^*)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\vec{\mathbf{u}}\vec{\mathbf{u}}^*\mathbf{A}^{-1}}{1 + \vec{\mathbf{u}}\mathbf{A}\vec{\mathbf{u}}^*},$$

In particular

$$\mathbf{\Pi}^{-1} = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{-1} = \mathbf{I}_N - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^*$$

$$ilde{\mathbf{Q}}_n(z) ~=~ \left(\mathbf{\Pi}^{1/2} ilde{\mathbf{Z}}_N \mathbf{\Pi}^{1/2} - z \mathbf{I}_N
ight)^{-1}$$

$$\begin{split} \tilde{\mathbf{Q}}_n(z) &= \left(\mathbf{\Pi}^{1/2} \tilde{\mathbf{Z}}_N \mathbf{\Pi}^{1/2} - z \mathbf{I}_N \right)^{-1} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_N - z \mathbf{\Pi}^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \end{split}$$

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\Pi^{1/2} \tilde{\mathbf{Z}}_{N} \Pi^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z \Pi^{-1} \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \Pi^{-1/2} \end{split}$$

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\mathbf{\Pi}^{1/2} \tilde{\mathbf{Z}}_{N} \mathbf{\Pi}^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \mathbf{\Pi}^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \right) \right)^{-1} \mathbf{\Pi}^{-1/2} \end{split}$$

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\mathbf{\Pi}^{1/2} \tilde{\mathbf{Z}}_{N} \mathbf{\Pi}^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \mathbf{\Pi}^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \right) \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} (\mathbf{Z}_{N} - z \mathbf{I}_{N} + \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \mathbf{\Pi}^{-1/2} \quad \text{where} \ \xi = z \frac{\theta}{1+\theta} \end{split}$$

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\mathbf{\Pi}^{1/2} \tilde{\mathbf{Z}}_{N} \mathbf{\Pi}^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \mathbf{\Pi}^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \right) \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} (\mathbf{Z}_{N} - z \mathbf{I}_{N} + \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Q}_{n} - \frac{\mathbf{Q}_{n} \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \mathbf{Q}_{n}}{1 + \xi \vec{\mathbf{u}}^{*} \mathbf{Q}_{n} \vec{\mathbf{u}}} \right) \mathbf{\Pi}^{-1/2} \end{split}$$

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\Pi^{1/2} \tilde{\mathbf{Z}}_{N} \Pi^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z \Pi^{-1} \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \right) \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} (\mathbf{Z}_{N} - z \mathbf{I}_{N} + \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \Pi^{-1/2} \quad \text{where} \ \xi = z \frac{\theta}{1+\theta} \\ &= \Pi^{-1/2} \left(\mathbf{Q}_{n} - \frac{\mathbf{Q}_{n} \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \mathbf{Q}_{n}}{1 + \xi \vec{\mathbf{u}}^{*} \mathbf{Q}_{n} \vec{\mathbf{u}}} \right) \Pi^{-1/2} \end{split}$$

Hence

$$oldsymbol{a}_N^* ilde{\mathbf{Q}}_n(z) oldsymbol{a}_N = oldsymbol{a}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} oldsymbol{a}_N - \xi rac{oldsymbol{a}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n oldsymbol{u} oldsymbol{u}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} oldsymbol{a}_N}{1 + \xi oldsymbol{u}^* \mathbf{Q}_n oldsymbol{u}}$$

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\mathbf{\Pi}^{1/2} \tilde{\mathbf{Z}}_{N} \mathbf{\Pi}^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \mathbf{\Pi}^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Z}_{N} - z \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \right) \right)^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} (\mathbf{Z}_{N} - z \mathbf{I}_{N} + \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \mathbf{\Pi}^{-1/2} \\ &= \mathbf{\Pi}^{-1/2} \left(\mathbf{Q}_{n} - \frac{\mathbf{Q}_{n} \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \mathbf{Q}_{n}}{1 + \xi \vec{\mathbf{u}}^{*} \mathbf{Q}_{n} \vec{\mathbf{u}}} \right) \mathbf{\Pi}^{-1/2} \end{split}$$

Hence

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

Not so ugly!

$$\begin{split} \tilde{\mathbf{Q}}_{n}(z) &= \left(\Pi^{1/2} \tilde{\mathbf{Z}}_{N} \Pi^{1/2} - z \mathbf{I}_{N} \right)^{-1} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z \Pi^{-1} \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z (\mathbf{I}_{N} + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} \left(\mathbf{Z}_{N} - z \left(\mathbf{I}_{N} - \frac{\theta}{1+\theta} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \right) \right)^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} (\mathbf{Z}_{N} - z \mathbf{I}_{N} + \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*})^{-1} \Pi^{-1/2} \\ &= \Pi^{-1/2} \left(\mathbf{Q}_{n} - \frac{\mathbf{Q}_{n} \xi \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \mathbf{Q}_{n}}{1 + \xi \vec{\mathbf{u}}^{*} \mathbf{Q}_{n} \vec{\mathbf{u}}} \right) \Pi^{-1/2} \end{split}$$

Hence

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \Pi^{1/2} \mathbf{Q}_n(z) \Pi^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \Pi^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \Pi^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

Not so ugly! And we have separated the contribution of the perturbation from the non-perturbated model.

Recall

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

Recall

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \Pi^{1/2} \mathbf{Q}_n(z) \Pi^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \Pi^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \Pi^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

and integrate the first term

$$\frac{1}{2i\pi}\oint_{\mathcal{C}^+}\vec{a}_N^*\Pi^{1/2}\mathbf{Q}_n(z)\Pi^{1/2}\vec{a}_N=??$$

Recall

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

and integrate the first term

$$\frac{1}{2i\pi}\oint_{\mathcal{C}^+}\vec{a}_N^*\Pi^{1/2}\mathbf{Q}_n(z)\Pi^{1/2}\vec{a}_N=\mathbf{0}$$

Why?

Recall

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

and integrate the first term

$$\frac{1}{2i\pi}\oint_{\mathcal{C}^+}\vec{a}_N^*\Pi^{1/2}\mathbf{Q}_n(z)\Pi^{1/2}\vec{a}_N=0$$

Why? Because

- 1. the contour only encloses $\lambda_{\max}(\mathbf{\tilde{Z}}_n)$ which is away from the bulk,
- 2. but all the eigenvalues of \mathbf{Z}_n are in the bulk. Hence:

$$\frac{1}{2i\pi} \oint_{\mathcal{C}^+} \frac{1}{\lambda_i(\mathbf{Z}_n) - z} \, dz = 0.$$

Recall

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

and integrate the first term

$$\frac{1}{2\boldsymbol{i}\pi}\oint_{\mathcal{C}^+} \boldsymbol{\vec{a}}_N^* \boldsymbol{\Pi}^{1/2} \mathbf{Q}_n(z) \boldsymbol{\Pi}^{1/2} \boldsymbol{\vec{a}}_N = 0$$

Why? Because

- 1. the contour only encloses $\lambda_{\max}(\tilde{\mathbf{Z}}_n)$ which is away from the bulk,
- 2. but all the eigenvalues of \mathbf{Z}_n are in the bulk. Hence:

$$\frac{1}{2i\pi} \oint_{\mathcal{C}^+} \frac{1}{\lambda_i(\mathbf{Z}_n) - z} \, dz = 0.$$

Last step is to simplify the remaining expression by systematically use the large N,n quadratic form approximation:

$$\vec{c}^* \mathbf{Q}_n(z) \vec{d} - \vec{c}^* \vec{d} \mathbf{g}_{\mathrm{MP}}(z) \xrightarrow[N,n \to \infty]{a.s.} 0$$

Recall

$$\vec{\boldsymbol{a}}_N^* \tilde{\mathbf{Q}}_n(z) \vec{\boldsymbol{a}}_N = \vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n(z) \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N - \xi \frac{\vec{\boldsymbol{a}}_N^* \mathbf{\Pi}^{1/2} \mathbf{Q}_n \vec{\mathbf{u}} \vec{\mathbf{u}}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \vec{\boldsymbol{a}}_N}{1 + \xi \vec{\mathbf{u}}^* \mathbf{Q}_n \vec{\mathbf{u}}}$$

and integrate the first term

$$\frac{1}{2i\pi}\oint_{\mathcal{C}^+}\vec{a}_N^*\Pi^{1/2}\mathbf{Q}_n(z)\Pi^{1/2}\vec{a}_N=0$$

Why? Because

- 1. the contour only encloses $\lambda_{\max}(\tilde{\mathbf{Z}}_n)$ which is away from the bulk,
- 2. but all the eigenvalues of \mathbf{Z}_n are in the bulk. Hence:

$$\frac{1}{2i\pi} \oint_{\mathcal{C}^+} \frac{1}{\lambda_i(\mathbf{Z}_n) - z} \, dz = 0.$$

Last step is to simplify the remaining expression by systematically use the large N,n quadratic form approximation:

$$\underbrace{\vec{c}^* \mathbf{Q}_n(z) \vec{d} - \vec{c}^* \vec{d} \, \mathbf{g}_{\check{\mathrm{M}}\mathrm{P}}(z) \xrightarrow[N,n \to \infty]{a.s.} 0 }_{N,n \to \infty} \mathbf{0} }_{\mathbf{U}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \mathbf{Q}_n \mathbf{u} \approx \mathbf{u}^* \mathbf{\Pi}^{1/2} \mathbf{u} \, \mathbf{g}_{\check{\mathrm{M}}\mathrm{P}}(z) \\ \mathbf{u}^* \mathbf{Q}_n \mathbf{\Pi}^{1/2} \mathbf{d}_N \approx \mathbf{u}^* \mathbf{\Pi}^{1/2} \mathbf{d}_N \, \mathbf{g}_{\check{\mathrm{M}}\mathrm{P}}(z) \\ \mathbf{u}^* \mathbf{Q}_n \mathbf{u} \approx \mathbf{g}_{\check{\mathrm{M}}\mathrm{P}}(z)$$

After simplifications,

$$\begin{split} \vec{\boldsymbol{a}}_{N}^{*} \vec{\boldsymbol{v}}_{\max} \vec{\boldsymbol{v}}_{\max}^{*} \vec{\boldsymbol{a}}_{N} &\approx -\frac{1}{2i\pi} \oint_{\mathcal{C}^{+}} |\vec{\boldsymbol{a}}_{N}^{*} \boldsymbol{\Pi}^{1/2} \vec{\mathbf{u}}|^{2} \frac{\mathbf{g}_{\tilde{M}P}^{2}(z)}{\xi^{-1} + \mathbf{g}_{\tilde{M}P}(z)} \, dz \\ &= -\frac{\vec{\boldsymbol{a}}_{N}^{*} \vec{\mathbf{u}} \vec{\mathbf{u}}^{*} \vec{\boldsymbol{a}}_{N}}{1 + \theta} \oint_{\mathcal{C}^{+}} \frac{\mathbf{g}_{\tilde{M}P}^{2}(z)}{\xi^{-1} + \mathbf{g}_{\tilde{M}P}(z)} \, dz \end{split}$$

It remains to compute the correction factor

$$-\frac{1}{1+\theta}\oint_{\mathcal{C}^+}\frac{\mathbf{g}_{\tilde{\mathrm{MP}}}^2(z)}{\xi^{-1}+\mathbf{g}_{\tilde{\mathrm{MP}}}(z)}\,dz$$

by residue calculus (not that difficult).

A minor miracle occurs: This factor admits a closed form formula!

$$-\frac{1}{1+\theta}\oint_{\mathcal{C}^+}\frac{\mathbf{g}_{\tilde{\mathrm{MP}}}^2(z)}{\xi^{-1}+\mathbf{g}_{\tilde{\mathrm{MP}}}(z)}\,dz = \left(1-\frac{c}{\theta^2}\right)\left(1+\frac{c}{\theta}\right)^{-1}$$

Finally:

$$\vec{\boldsymbol{a}}_N^* \vec{\boldsymbol{v}}_{\max} \vec{\boldsymbol{v}}_{\max}^* \vec{\boldsymbol{a}}_N - \left(1 - \frac{c}{\theta^2}\right) \left(1 + \frac{c}{\theta}\right)^{-1} \vec{\boldsymbol{a}}_N^* \vec{\mathbf{u}} \vec{\mathbf{u}}^* \vec{\boldsymbol{a}}_N \xrightarrow[N,n \to \infty]{} 0 \ .$$

Introduction

Large Covariance Matrices

Spiked models

Introduction and objective The limiting spectral measure The largest eigenvalue Spiked model eigenvectors Spiked models: Summary

Statistical Test for Single-Source Detection

Summary I

Spiked model

Let

- ▶ Π_N a small perturbation of the identity [Example: $\Pi_N = \mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*$]
- \mathbf{X}_N a $N \times n$ matrix with i.i.d. entries

then $\left| \left. \widetilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N \right|$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to Marčenko-Pastur distribution:

almost surely,
$$L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n \to \infty]{\mathcal{L}} \mathbb{P}_{\check{\mathrm{MP}}}$$

Largest eigenvalue

• if $\theta \leq \sqrt{c}$, then $\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_{N}\widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to the right edge of the bulk • if $\theta > \sqrt{c}$, then $\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_{N}\widetilde{\mathbf{X}}_{N}^{*}\right)$ separates from the bulk

$$\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_{N}\widetilde{\mathbf{X}}_{N}^{*}\right) \to \sigma^{2}(1+\theta)\left(1+\frac{c}{\theta}\right) > \sigma^{2}(1+\sqrt{c})^{2}$$

Summary II

1. Expression of $ec{v}_{\max}$ with the help of the resolvent

$$ec{a}_N^*ec{v}_{ ext{max}}ec{v}_{ ext{max}}^*ec{a}_N = rac{1}{2i\pi}\oint_{\mathcal{C}^+}ec{a}_N^* ilde{Q}_n(z)ec{a}_N\,dz$$

2. Convenient expression of \vec{v}_{max} where the contribution of the perturbation is separated from the resolvent of the non-perturbated model ($\check{M}P$)

$$\vec{\boldsymbol{a}}_N^* \vec{\boldsymbol{v}}_{\max} \vec{\boldsymbol{v}}_{\max}^* \vec{\boldsymbol{a}}_N \quad \approx \quad - \frac{\vec{\boldsymbol{a}}_N^* \vec{\mathbf{u}} \vec{\mathbf{u}}^* \vec{\boldsymbol{a}}_N}{1+\theta} \oint_{\mathcal{C}^+} \frac{\mathbf{g}_{\tilde{\mathrm{MP}}}^2(z)}{\xi^{-1} + \mathbf{g}_{\tilde{\mathrm{MP}}}(z)} \, dz$$

3. Residue calculus to find the final form

$$oldsymbol{ec{a}}_N^*oldsymbol{ec{v}}_{\max}oldsymbol{ec{a}}_N^*=\left(1-rac{c}{ heta^2}
ight)\left(1+rac{c}{ heta}
ight)^{-1}oldsymbol{ec{a}}_N^*oldsymbol{ec{u}}_N^*oldsymbol{ec{a}}_N^* \cdots rac{a.s.}{N,n
ightarrow\infty}0\;.$$

Introduction

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup

Asymptotic behaviour of the GLRT Fluctuations of the test statistics Power of the test The GLRT: Summary
The hypothesis testing problem Statistical Setup

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

The $\vec{\mathbf{y}}(k)$'s are *n* observations all either drawn under H_0 or H_1 . Here,

• $\vec{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

- \blacktriangleright $\vec{\mathbf{h}}$ is a $N\times 1$ deterministic and unknown vector and typically represents the propagation channel
- \triangleright s(k) represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations $(\vec{\mathbf{y}}(k), 1 \le k \le n)$, and the associated sample covariance matrix

$$\hat{\mathbf{R}}_n = \frac{1}{n} \mathbf{Y}_n \mathbf{Y}_n^*$$
 where $\mathbf{Y}_n = [\vec{\mathbf{y}}(1), \cdots, \vec{\mathbf{y}}(n)]$ is $N \times n$,

the aim is to decide H_0 (no signal) or H_1 (single-source detection) in the case where

$$\frac{N}{n} \to c \in (0,1) \quad \text{i.e.} \quad \boxed{\text{Dimension } N \text{ of observations } \mathbf{x} \text{ size } n \text{ of sample}}$$

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_n is a $N\times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$\mathbf{\Sigma}_N \;=\; \left\{ egin{array}{cc} \sigma^2 \mathbf{I}_N & ext{under } H_0 \ \mathbf{ar{h}}\mathbf{ar{h}}^* + \sigma^2 \mathbf{I}_N & ext{under } H_1 \end{array}
ight.$$

hence the likelihood functions write

$$p_{0}(\mathbf{Y}_{N};\sigma^{2}) = \frac{1}{(\pi\sigma^{2})^{Nn}} \exp\left(-\frac{n}{\sigma^{2}} \operatorname{Trace} \hat{\mathbf{R}}_{N}\right)$$

$$p_{1}(\mathbf{Y}_{N};\vec{\mathbf{h}};\sigma^{2}) = \frac{1}{\left[\pi^{N} \det\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^{*}+\sigma^{2}\mathbf{I}_{N}\right)\right]^{n}} \exp\left(-\frac{n}{\sigma^{2}} \operatorname{Trace} \hat{\mathbf{R}}_{N}\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^{*}+\sigma^{2}\mathbf{I}_{N}\right)^{-1}\right)$$

Neyman-Pearson

In case where σ^2 and $\vec{\mathbf{h}}$ are known, the Likelihood Ratio Statistics

$$\frac{p_1(\mathbf{Y}_N; \vec{\mathbf{h}}; \sigma^2)}{p_0(\mathbf{Y}_N; \sigma^2)}$$

provides a uniformly most powerful test:

- Fix a given level $\alpha \in (0,1)$
- ► The condition over the **Probability of** False Alarm $\mathbb{P}(H_1 \mid H_0) \leq \alpha$ sets the threshold
- the maximum achievable power

$$1 - \mathbb{P}(H_0 \mid H_1)$$

is guaranteed by Neyman-Pearson.

The GLRT

The Generalized Likelihood Ratio Test

In the case where $\vec{\mathbf{h}}$ and σ^2 are unknown, we use instead:

$$L_n = \frac{\sup_{\sigma^2, \vec{\mathbf{h}}} p_1(\mathbf{Y}_n, \sigma^2, \vec{\mathbf{h}})}{\sup_{\sigma^2} p_0(\mathbf{Y}_n, \sigma^2)}$$

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

$$L_n = \frac{\left(1 - \frac{1}{N}\right)^{(1-N)n}}{\left(\frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{Trace}\hat{\mathbf{R}}_n}\right)^n \left(1 - \frac{1}{N}\frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{Trace}\hat{\mathbf{R}}_n}\right)^{(N-1)n}}$$

erministic function of
$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{Trace}\hat{\mathbf{R}}_n}$$

and is a deterministic function of $T_n = \frac{\lambda_{\max}(\mathbf{R}_n)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_n}$

Introduction

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup Asymptotic behaviour of the GLRT Fluctuations of the test statistics

Power of the test The GLRT: Summary

Limit of the test statistics T_n l

Under H_0 Recall $T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{Trace}\hat{\mathbf{R}}_n}$. We have: $\lambda_{\max}(\hat{\mathbf{R}}_n) \xrightarrow[N,n\to\infty]{a.s.} \sigma^2 (1+\sqrt{c})^2$ $\frac{1}{N}\operatorname{Trace}\hat{\mathbf{R}}_n = \frac{1}{Nn}\sum_{i,j}|Y_{ij}|^2 \xrightarrow[N,n\to\infty]{a.s.} \sigma^2$

hence

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_n} \quad \xrightarrow{a.s.}{N, n \to \infty} \quad (1 + \sqrt{c})^2$$

Limit of the test statistics T_n II

Under H_1

Let

$$\mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2}$$

the Signal-to-Noise (SNR) ratio.

 \blacktriangleright if $\mathbf{snr} > \sqrt{c}$ then

$$T_n \xrightarrow[N,n \to \infty]{a.s.} (1 + \operatorname{snr}) \left(1 + \frac{c}{\operatorname{snr}} \right) > (1 + \sqrt{c})^2$$

• if
$$\mathbf{snr} \leq \sqrt{c}$$
 then

$$T_n \xrightarrow[N,n \to \infty]{a.s.} (1 + \sqrt{c})^2$$

Limit of the test statistics T_n III

Remarks

 \blacktriangleright Condition $\left| \ \mathbf{snr} > \sqrt{c} \ \right|$ is automatically fulfilled in the standard regime where

N fixed and
$$n \to \infty$$
 as $c = \lim_{n \to \infty} \frac{N}{n} = 0$.

▶ In the case $N, n \rightarrow \infty$, recall that the support of Marčenko-Pastur distribution is

$$[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$$
,

i.e.

The higher $\sqrt{c}\text{,}$ the larger the support

One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).

Hence the rule of thumb

Detection occurs if ${\bf snr}$ higher than asymptotic data noise.

N= 50 , n= 2000 , sqrt(c)= 0.158113883008419

Figure: Influence of asymptotic data noise as \sqrt{c} increases

N= 100 , n= 2000 , sqrt(c)= 0.223606797749979

Figure: Influence of asymptotic data noise as \sqrt{c} increases

N= 200 , n= 2000 , sqrt(c)= 0.316227766016838

Figure: Influence of asymptotic data noise as \sqrt{c} increases

N= 500 , n= 2000 , sqrt(c)= 0.5

Figure: Influence of asymptotic data noise as \sqrt{c} increases

N= 1000 , n= 2000 , sqrt(c)= 0.707106781186548

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Elements of proof I

We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_{n}\mathbf{Y}_{n}^{*}}{\frac{1}{N}\operatorname{Trace}(\hat{\mathbf{R}}_{n})}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2} \quad \text{as} \quad \frac{1}{N} \text{Trace}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$$

Notice that

$$\mathbf{Y}_n = [\mathbf{y}_1, \cdots, \mathbf{y}_n] \text{ with } \mathbf{y}_i \sim \mathcal{CN}(0, \mathbf{h}\mathbf{h}^* + \sigma^2 \mathbf{I}_N)$$

Hence

$$\begin{aligned} \mathbf{Y}_N &= \left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N\right)^{1/2} \mathbf{X}_N \quad \Rightarrow \quad \frac{\mathbf{Y}_N}{\sigma} &= \left(\mathbf{I}_N + \frac{\vec{\mathbf{h}}\vec{\mathbf{h}}^*}{\sigma^2}\right)^{1/2} \mathbf{X}_N \\ &= \left(\mathbf{I}_N + \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2} \vec{\mathbf{u}}\vec{\mathbf{u}}^*\right)^{1/2} \mathbf{X}_N \end{aligned}$$

with \mathbf{X}_N a $N\times n$ matrix having i.i.d. entries $\mathcal{C}N(0,1)$ and $\vec{\mathbf{u}}=\frac{\vec{\mathbf{h}}}{\|\vec{\mathbf{h}}\|}$

Conclusion

Spectrum of $\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*$ follows a spiked model with rank-one perturbation

Elements of proof II

We can now conclude:

If
$$\underline{\mathbf{snr} > \sqrt{c}}$$
 then

$$\frac{\lambda_{\max}\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N}\operatorname{Trace}(\hat{\mathbf{R}}_{n})} \xrightarrow[N,n \to \infty]{(H_{1})} (1 + \mathbf{snr})\left(1 + \frac{c}{\mathbf{snr}}\right) > (1 + \sqrt{c})^{2}$$

and the test statistics discriminates between the hypotheses H_0 and H_1 .

• If $|\mathbf{snr} \leq \sqrt{c}|$ then

$$\frac{\lambda_{\max}\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N}\operatorname{Trace}(\hat{\mathbf{R}}_{n})} \xrightarrow[N,n\to\infty]{(H_{1})} (1+\sqrt{c})^{2}$$

Same limit as under H_0 . The test statistics does not discriminate between the two hypotheses.

Introduction

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup Asymptotic behaviour of the GLRT Fluctuations of the test statistics

Power of the test The GLRT: Summary

Fluctuations of the GLRT under H_0 - I

The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t}_{\boldsymbol{\alpha}}\right) = \alpha \; ,$$

but hard to obtain.

• We rather study the asymptotic fluctuations of L_n under the regime

$$N, n \to \infty$$
, $\frac{N}{n} \to c \in (0, 1)$.

 \blacktriangleright L_N is the ratio of **two random variables**. We need to understand

- the fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_0 ,
- the fluctuations of $\frac{1}{N}$ Trace $\hat{\mathbf{R}}_n$ under H_0 .

Fluctuations of the GLRT under H_0 - II

Fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$: Tracy-Widom distribution at rate $N^{2/3}$

$$\frac{N^{2/3}}{\Theta_N} \left\{ \lambda_{\max} \left(\hat{\mathbf{R}}_n \right) - \sigma^2 (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N,n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}$$

where

$$c_n = \frac{N}{n}$$
 and $\Theta_N = \sigma^2 (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1\right)^{1/3}$

Otherwise stated,

$$\lambda_{\max}\left(\hat{\mathbf{R}}_{n}\right) = \sigma^{2}(1+\sqrt{c_{n}})^{2} + \frac{\Theta_{N}}{N^{2/3}}\boldsymbol{X}_{TW} + \varepsilon_{n}$$

where $oldsymbol{X}_{TW}$ is a random variable with Tracy-Widom distribution.

Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

its cumulative distribution function

$$F_{TW}(x) = \exp\left\{-\int_x^\infty (u-x)^2 q^2(u) \, du\right\}$$

where

$$q^{\prime\prime}(x) = xq(x) + 2q^3(x)$$
 and $q(x) \sim \operatorname{Ai}(x)$ as $x \to \infty$.

 $x \mapsto \operatorname{Ai}(x)$ being the Airy function.

Don't bother .. just download it

- ▶ For simulations, cf. R Package 'RMTstat', by Johnstone et al.
- Also, Folkmar Bornemann (TU München) has developed fast matlab code

Tracy-Widom curve

Figure: Tracy-Widom density

Tracy-Widom curve

Marchenko-Pastur and Tracy-Widom Distributions

Figure: Fluctuations of the largest eigenvalue $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_0

Fluctuations of the GLRT under H_0 - III

Fluctuations of $\frac{1}{N}$ Trace $(\hat{\mathbf{R}}_n)$: Gaussian distributions at rate N

$$N\left\{\frac{1}{N}\sum_{i=1}^{N}\lambda_{i}(\hat{\mathbf{R}}_{n})-\sigma^{2}\right\}\xrightarrow[N,n\to\infty]{\mathcal{L}}\mathcal{N}(0,\Gamma) ,$$

Otherwise stated:

$$\frac{1}{N}\operatorname{Trace}\left(\hat{\mathbf{R}}_{n}\right) = \frac{1}{N}\sum_{i=1}^{N}\lambda_{i}(\hat{\mathbf{R}}_{n}) = \sigma^{2} + \frac{\sqrt{\Gamma}}{N}\boldsymbol{Z} + \varepsilon_{n}$$

where Z is a random variable with distribution $\mathcal{N}(0,1)$.

Fluctuations of the GLRT under H_0 - IV

Conclusion

Fluctuations of
$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_n}$$
 are driven by $\lambda_{\max}(\hat{\mathbf{R}}_n)$:

$$\frac{N^{2/3}}{\widetilde{\Theta}_N} \left\{ L_N - (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N,n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}} \quad \text{with} \quad \widetilde{\Theta}_N = (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1 \right)^{1/3}$$

▶ In order to set the threshold α , we choose t^n_{α} as

$$m{t}_{m{lpha}}^{m{n}} = (1+\sqrt{c_n})^2 + rac{\widetilde{\Theta}_N}{N^{2/3}} m{t}_{m{lpha}}^{\mbox{Tracy-Widom}}$$

where $t_{\alpha}^{\rm Tracy-Widom}$ is the corresponding quantile for a Tracy-Widom random variable:

$$\mathbb{P}\{\boldsymbol{X}_{TW} > \boldsymbol{t}_{\boldsymbol{\alpha}}^{\mathsf{Tracy-Widom}}\} \leq \alpha.$$

Introduction

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup Asymptotic behaviour of the GLRT Fluctuations of the test statistics **Power of the test** The GLRT: Summary

Power of the GLRT I

Type II error and Power of the test

Given a level of confidence $\alpha\in(0,1)$, the type I error defines the associate quantile $t_{\pmb{\alpha}}$

$$\mathbb{P}_{H_0}\left(L_N > oldsymbol{t}^{oldsymbol{n}}_{oldsymbol{lpha}}
ight) \quad \leq \quad lpha$$
 .

The type II error is defined as

 $\mathbb{P}_{H_1}\left(L_N < \boldsymbol{t_{\alpha}^n}\right)$,

and the associated power of the test is defined as

$$\mathbb{P}_{H_1}\left(L_N \geq \boldsymbol{t_{\alpha}^n}\right) = 1 - \mathbb{P}_{H_1}\left(L_N < \boldsymbol{t_{\alpha}^n}\right) \ .$$

No optimality

Contrary to Neyman-Pearson procedure, there is **no theoretical guarantee** that the GLRT is a uniformily most powerful test.

It is therefore important to be able to compute the power of the GLRT

Power of the GLRT II

 \blacktriangleright For fixed level of confidence α

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}^n}\right) \leq \alpha \;,$$

the type II error exponentially decreases to 0.

► Indeed, we want to evaluate

$$\begin{split} \mathbb{P}_{H_1} \left(L_N \leq \boldsymbol{t}^n_{\boldsymbol{\alpha}} \right) \\ &= \mathbb{P}_{H_1} \left(L_N \leq (1 + \sqrt{c})^2 + \frac{\widetilde{\Theta}_N}{N^{2/3}} \boldsymbol{t}_{\boldsymbol{\alpha}}^{\mathsf{Tracy-Widom}} \right) \\ &= \mathbb{P}_{H_1} \left(L_N \leq (1 + \sqrt{c})^2 + \mathcal{O}\left(\frac{1}{N^{2/3}}\right) \right) \end{split}$$

but

$$L_N \quad \xrightarrow[N,n\to\infty]{} H_1 \quad (1+\operatorname{snr})\left(1+\frac{c}{\operatorname{snr}}\right) > (1+\sqrt{c})^2 + \mathcal{O}\left(\frac{1}{N^{2/3}}\right)$$

Power of the GLRT III: How to compute type II error?

Asymptotically, of course .. but how exactly?

Easy but risky: The fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_1

Theorem

$$\sqrt{N}\left(\lambda_{\max}(\hat{\mathbf{R}}_n) - (1 + \mathbf{snr})\left(1 + \frac{c_n}{\mathbf{snr}}\right)\right) \xrightarrow[N,n \to \infty]{\mathcal{L}} \mathcal{N}(0,\Gamma)$$

Then evaluate $\mathbb{P}_{H_1}\left(L_N\leq t^n_\alpha\right)$ by Gaussian quantiles. Well .. not a very good idea ..

Be serious, compute the large deviations!

• one can define its error exponent ${\boldsymbol{\mathcal E}}$ as:

$$\boldsymbol{\mathcal{E}} = \lim_{N,n \to \infty} - rac{1}{n} \log \mathbb{P}_{H_1}(L_N < \boldsymbol{t_{\alpha}^n}) \; .$$

Hence, the type II error writes:

$$\mathbb{P}_{H_1}(L_N < t(\alpha)) \approx_{N,n \to \infty} e^{-n\boldsymbol{\mathcal{E}}}$$

Power of the GLRT IV: The error exponent

Theorem

► The type II error writes:

$$\mathbb{P}_{H_1}(L_N < \boldsymbol{t_{\alpha}^n}) \approx_{N,n \to \infty} e^{-n\boldsymbol{\mathcal{E}}}$$

in the sense that

$$oldsymbol{\mathcal{E}} = \lim_{N,n o \infty} -rac{1}{n} \log \mathbb{P}_{H_1}(L_N < oldsymbol{t}_{oldsymbol{lpha}}) \; .$$

• The error exponent ${\cal E}$ is fully explicit

$$\boldsymbol{\mathcal{E}} = \frac{\lambda^+ - \lambda_{spk}^{\infty}}{1 + \mathbf{snr}} - (1 - c) \log \left(\frac{\lambda^+}{\lambda_{spk}^{\infty}} - 2c \left[F^+(\lambda^+) - F^+(\lambda_{spk}^{\infty}) \right] \right)$$

Elements of proof

• Proof essentially based on the large deviations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_1

Power of the GLRT V

The error exponent curve

Instead of letting the type I error fixed, it is of interest to let it go exponentially to zero:

$$\mathbb{P}_{H_0}\left(L_N > t(\mathbf{a})\right) \approx_{N,n \to \infty} e^{-n\mathbf{a}}$$

and to compute the corresponding type II error (or its error component ${m {\cal E}}(a))$

$$\mathbb{P}_{H_1}\left(L_N < t(\mathbf{a})\right) \approx_{N,n \to \infty} e^{-n\boldsymbol{\mathcal{E}}(\mathbf{a})}$$

 \blacktriangleright The set $(\mathbf{a}, \boldsymbol{\mathcal{E}}(\mathbf{a}))$ such that

$$\mathbb{P}_{H_0} \left(L_N > t(\mathbf{a}) \right) \approx_{N,n \to \infty} e^{-n\mathbf{a}}$$
$$\mathbb{P}_{H_1} \left(L_N < t(\mathbf{a}) \right) \approx_{N,n \to \infty} e^{-n\boldsymbol{\mathcal{E}}(\mathbf{a})}$$

is called the **error exponent curve** and can be fully described in terms of large deviation rate functions.

Introduction

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup Asymptotic behaviour of the GLRT Fluctuations of the test statistics Power of the test

The GLRT: Summary

Summary

Consider the following hypothesis

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

then the GLRT amounts to study

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_n}$$

- The test statistics T_n discriminates between H_0 and H_1 if $|\mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2} > \sqrt{c}$
- ▶ The threshold can be asymptotically determined by Tracy-Widom quantiles.
- The type II error (equivalently power of the test) can be analyzed via the error exponent of the test

$${oldsymbol {\cal E}} = \lim_{N,n o \infty} - rac{1}{n} \log \mathbb{P}_{H_1}(L_N < {oldsymbol t}_{oldsymbol lpha}) \; .$$

.. But more to come!!!