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Large Random Matrices

Random matrices
It is a N ×N matrix

YN =

 Y11 · · · Y1N

...
...

YN1 · · · YNN


whose entries (Yij ; 1 ≤ i, j ≤ N) are random variables.

Matrix features
Of interest are the following quantities

I YN ’s spectrum (λi, 1 ≤ i ≤ N) in particular λmin and λmax.

I linear statistics

Trace f(YN ) =
N∑
i=1

f(λi)

I eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

N →∞

Moreover this regime is of interest in many applications.
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Large Random Matrices: Wigner Matrices

Matrix model

Let XN = (Xij) a symmetric N ×N
matrix with i.i.d. entries on and above
the diagonal with

EXij = 0 and E |Xij |2 = 1

and Xij = Xji (for symmetry).

I consider the spectrum of Wigner

matrix YN = XN√
N

Wigner’s theorem (1948)

”The histogram of a Wigner matrix converges to the semi-circular distribution”
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Large Covariance Matrices

: Marčenko-Pastur’s theorem

Matrix model

Let XN be a N × n matrix with i.i.d.
entries

EXij = 0 , E|Xij |2 = 1

and consider the spectrum of 1
n

XNX∗N
in the regime where

N,n→∞ and
N

n
→ c ∈ (0,∞)

dimensions of matrix XN of the same order

Marčenko-Pastur’s theorem (1967)

”The histogram of a Large Covariance Matrix converges to
Marčenko-Pastur distribution with given parameter (here 0.7)”
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Large Non-Hermitian Matrices

: The Circular Law

Matrix model

Let XN be a N ×N matrix with i.i.d.
entries

EXij = 0 , E|Xij |2 = 1

and consider the spectrum of matrix
YN = 1√

N
XN as N →∞

I In this case, the eigenvalues are
complex!

Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of YN converges to the uniform probability on the disc
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Motivations

An old history

I Data Analysis (Wishart, 1928)

I Theoretical Physics (from the ’50s - Wigner, Dyson, Pastur, etc.)

I Pure mathematics (from the late ’80s - non-commutative probability, free
probability, operator algebra - Voiculescu, etc.)

I Graph theory (théorie spectrale des graphes)

I Wireless communication (Telatar, 1995 - Verdú, Tse, Shamai, Lévêque +
important french group: Loubaton, Hachem, Debbah, Couillet, N., etc.)

Current trends

I Statistics in large dimension (El Karoui, Bickel & Levina, etc.)

I Pure mathematics: universality questions, operator algebra (Tao, Vu, Erdös,
Guionnet, etc.)

I Social networks, communication networks

I Neuroscience (non-hermitian models - G. Wainrib)
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Objective of this mini-course

Objective

I To present emblematic results and concepts in the theory of Large Random
Matrices

I To give details on the technical means

I To present motivating applications of the theory

Also ..

I To demystify this theory because the technical price to enter it is substantial for a
newcomer
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The spectral theorem

Eigenvectors and eigenvalues

Given a N ×N matrix A we are interested in its eigenvalues λ

A~u = λ~u , (~u 6= 0)

and its associated eigenvectors ~u.

The spectral theorem - complex case

if A is hermitian:
A = A∗ ⇔ [A]ij = [A]ji

then A is diagonalizable with real eigenvalues:

A = U∗ΛU , UU∗ = U∗U = IN

with U unitary matrix and Λ real diagonal.

The spectral theorem - real case

If A is symmetric that is A = AT , then

A = OTΛO , OOT = OTO = IN

where O is (real) orthogonal.
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The spectral measure of a matrix A

.. also called the empirical measure of the eigenvalues

The Dirac measure
We define a probability measure δx over R by

δx([a, b]) =

{
1 if x ∈ [a, b]
0 else

otherwise stated:

A set [a, b] is assigned value 1 if x ∈ [a, b] and value 0 else.

The spectral measure

If A is N ×N hermitian with eigenvalues λ1, · · · , λN then its spectral measure is:

LN =
1

N

N∑
i=1

δλi ⇒ LN ([a, b]) =
#{λi ∈ [a, b]}

N

Otherwise stated

LN ([a, b]) is the proportion of eigenvalues of A in [a, b].
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Normalization

Given a matrix YN with random entries, we wish to find the right normalization of
the entries so that the eigenvalues (λi) are confined.

Loose conditions to control the eigenvalues is (for example):

(Cp) :
1

N

N∑
i=1

λpi = O(1) ,

13



Normalization: example of Wigner matrices

Consider a hermitian N ×N matrix XN = (Xij) with i.i.d. entries on and above the
diagonal:

Xii real
Xij i.i.d. if i < j

Xij = Xji if i > j .
with EXij = 0 and E |Xij |2 = σ2

Let YN = αNXN , αN to be determined so that YN ’s eigenvalues (λi) are confined.

(C1) :
1

N

N∑
i=1

λi =
1

N
Trace YN =

αN

N

N∑
i=1

Xii
LLN−−−−→
N→∞

0 if αN = O(1)

(C2) :
1

N

N∑
i=1

λ2
i =

1

N
Trace Y2

N =
αN

2

N
Trace X2

N

=
αN

2

N


N∑
i=1

X2
ii + 2

∑
i<j

|Xij |2
 = O(1) if αN ∝

1
√
N

Definition: A Wigner matrix is a matrix YN = XN√
N

14



Spectrum analysis: The historical proof of Wigner’s theorem

1. Compute the asymptotic moments of the spectral distribution

LN =
1

N

N∑
i=1

δλi of YN =
XN√
N

that is

mp(N) =

∫
xp Ln(dx) =

1

N

N∑
i=1

λpi =
1

N
Trace Xp

N

and prove that

mp(N) −−−−→
N→∞

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p = 2k + 1

2. On the other hand, compute the moments of the semi-circular distribution:∫ 2

−2
λk
√

4− λ2

2π
dλ =

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p = 2k + 1

3. Conclude: convergence of moments + tightness implies the convergence of the
spectral distribution.

⇒ Computation of empirical moments heavily relies on (sometimes difficult)
combinatorics.
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Spectrum analysis: The resolvent

I Consider the equation in ~x:

A ~x = z ~x+~b ⇔ (A− zI)~x = ~b ⇔ ~x = (A− zI)−1~b

if z /∈ spectrum(A) .

I The resolvent of A is

Q(z) = (A− zI)−1

I its singularities are exactly eigenvalues of A.

I Resolvent of a Hermitian matrix

A = U∗ΛU ⇒ Q(z) = U∗(Λ− zI)−1U

A = U∗

 λ1

. . .

λN

U ⇒ Q(z) = U∗


1

λ1−z
. . .

1
λN−z

U

I Problem: if size of A big, then size of Q big as well.

I The right object to consider (cf. supra) is the normalized trace of the resolvent.
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Spectrum Analysis: The Stieltjes Transform I

Given a probability measure P, its Stieltjes transform is a function

g(z) =

∫
R

P(dλ)

λ− z
, z ∈ C+ ,

with inverse formulas

P[a, b] =
1

π
lim
y↓0
=
∫ b

a
g(x+ iy) dx , if P{a} = P{b} = 0∫

f dP =
1

π
lim
y↓0
=
∫
R
f(x)g(x+ iy) dx ,

Examples

1. Dirac measure:

P = δλ0
⇒ g(z) =

1

λ0 − z
2. Spectral measure:

P =
1

N

N∑
i=1

δλi ⇒ g(z) =
1

N

N∑
i=1

1

λi − z

17



Spectrum Analysis: The Stieltjes Transform II

Relation with the resolvent of Large Random Matrices

Let A hermitian with eigenvalues (λi) and spectral measure 1
N

∑N
i=1 δλi .

Then

g(z) = Stieltjes transform of

(
1

N

N∑
i=1

δλi

)

=
1

N

N∑
1

1

λi − z

=
1

N
Trace


1

λ1−z
. . .

1
λN−z

 =
1

N
Trace (A− zI)−1

I The Stieltjes transfom g is the normalized trace of the resolvent (A− zI)−1

I Whatever size of A, Stieltjes transform g remains a fonction C→ C.
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Summary

Large Random Matrices

I Associated to a matrix A is its spectral measure: LN = 1
N

∑N
i=1 δλi(A)

I .. its resolvent: Q(z) = (A− zIN )−1

I .. its Stieltjes transform

gn(z) =

∫
Ln(d λ)

λ− z
=

1

N

N∑
i=1

1

λi(A)− z
=

1

N
Trace Q(z)

Normalizing a matrix

I In order to confine a matrix’ eigenvalues, we consider the condition:

(Cp) :
1

N

N∑
i=1

λpi = O(1) ,

Classical results

I Wigner’s theorem, Marčenko-Pastur’s theorem, The circular law.
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Wishart Matrices I

The model

I Consider a N × n matrix XN with i.i.d. entries

EXij = 0 , E|Xij |2 = σ2 .

Matrix XN is a n-sample of N -dimensional vectors:

XN = [X·1 · · · X·n] with EX·1X∗·1 = σ2IN .

Objective

I to describe the limiting spectrum of 1
n

XNX∗N as

N

n
−−−−→
n→∞

c ∈ (0,∞) .

i.e. dimensions of matrix XN are of the same order.
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Wishart Matrices II

The usual case N << n

Assume N fixed and n→∞. Since

EX·1X∗·1 = σ2IN ,

L.L.N implies

1

n
XNX∗N =

1

n

n∑
i=1

X·iX
∗
·i

a.s.−−−−→
n→∞

σ2IN

In particular,

I all the eigenvalues of 1
n

XNX∗N converge to σ2,

I equivalently, the spectral measure of 1
n

XNX∗N converges to δσ2 .

A priori observation # 1

If the ratio of dimensions c↘ 0, then the spectral measure should
look like a Dirac measure at point σ2.
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Wishart Matrices III

The case where c > 1

Recall that XN is N × n matrix and c = lim N
n
.

If N > n, then 1
n

XNX∗N is rank-defficient and has rank n;

I in this case, eigenvalue 0 has multiplicity N − n and the spectral measure writes:

LN =
1

N

N∑
i=1

δλi =
1

N

n∑
i=1

δλi +
N − n
N

δ0

I The limiting spectral measure of LN necessarily features a Dirac measure at 0:

N − n
N

δ0 −→
(

1−
1

c

)
δ0 as

N

n
→ c .

A priori observation #2

If c > 1, then the limiting spectral measure will feature a Dirac
measure at 0 with weight 1− 1

c
.
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Simulations
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Simulations
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Marčenko-Pastur theorem

Theorem

I Consider a N × n matrix XN with i.i.d. entries

EXij = 0 , E|Xij |2 = σ2 .

with N and n of the same order and LN its spectral measure:

cn
4
=
N

n
−−−−→
n→∞

c ∈ (0,∞) , LN =
1

N

N∑
i=1

δλi , λi = λi

(
1

n
XNX∗N

)
I Then almost surely (= for almost every realization)

LN −−−−−−→
N,n→∞

PM̌P in distribution

where PM̌P is Marčenko-Pastur distribution:

PM̌P(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(λ+ − x)(x− λ−)

2πσ2xc
1[a,b](x) dx

with

{
λ− = σ2(1−

√
c)2

λ+ = σ2(1 +
√
c)2
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Simulations vs M̌P distribution
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Simulations vs M̌P distribution
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Remarks I

I Marčenko-Pastur theorem describes the global regime of the spectrum.

I Convergence in distribution: For a given realization and every test function
φ : R→ R, the theorem states:

1

N

N∑
i=1

φ(λi) −−−−−−→
N,n→∞

∫
φ(x)PM̌P(dx) .

I The Dirac measure at zero is an artifact due to the dimensions of the matrix if

N > n (cf. infra) .
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Remarks II

What if c↘ 0?

I If c→ 0, that is n >> N , then
typical from the usual regime
”small dimensional data vs large
samples”.

I the support of Marčenko-Pastur
distribution

[σ2(1−
√
c)2, σ2(1 +

√
c)2]

concentrates around {σ2} and

PM̌P −−−→c→0
δσ2 .

I In accordance with a priori
information # 1
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distribution

[σ2(1−
√
c)2, σ2(1 +

√
c)2]

concentrates around {σ2} and

PM̌P −−−→c→0
δσ2 .

I In accordance with a priori
information # 1

0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

c=0.9
c=0.5
c=0.1
c=0.01

Marchenko-Pastur Distribution

Figure: M̌P distribution as c↘ 0

28



Remarks II

What if c↘ 0?

I If c→ 0, that is n >> N , then
typical from the usual regime
”small dimensional data vs large
samples”.

I the support of Marčenko-Pastur
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Results concerning the local regime for Wishart matrices

Convergence of extremal eigenvalues

Recall that [σ2(1−
√
c)2, σ2(1 +

√
c)2] is the support of M̌P distribution, then:

λmax

(
1

n
XNX∗N

)
almost surely−−−−−−−−−→
N,n→∞

σ2(1 +
√
c)2

λmin

(
1

n
XNX∗N

)
almost surely−−−−−−−−−→
N,n→∞

σ2(1−
√
c)2

Fluctuations of λmax: Tracy-Widom distribution

We can fully describe the fluctuations of λmax:

N2/3

ΘN

{
λmax

(
1

n
XNX∗N

)
− σ2(1 +

√
cn)2

}
L−−−−−−→

N,n→∞
PTW

where

cn =
N

n
and ΘN = σ2(1 +

√
cn)

(
1
√
cn

+ 1

)1/3
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Proof of Marčenko-Pastur’s theorem
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Strategy of proof

Recall definition of the Stieltjes transform gn:

gn(z) =
1

N

N∑
i=1

1

λi − z
=

1

N
Trace

(
1

n
XNX∗N − zIN

)−1

.

1. Convergence of the Stieltjes transform. Since

LN =
1

N

N∑
i=1

δλi −−−−−−→N,n→∞
PM̌P ⇐⇒ gn(z) −−−−−−→

N,n→∞
ST
(
PM̌P

)
we prove the convergence of gn.

2. After algebraic manipulations and probabilistic arguments, we prove that

gn(z) =
1

σ2(1− cn)− z − zσ2cngn(z)
+ εn(z) with εn(z) −−−−−−→

N,n→∞
0 .

3. By stability of Marčenko-Pastur’s equation, gn converges to a function gM̌P
which satisfies the fixed point equation:

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

4. We identify PM̌P = (Stieltjes Transform)−1(gM̌P) .
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Linear Algebra I: Diagonal element of the resolvent

Let ΣN a N × n matrix with rows ~ξi and consider the resolvent of ΣNΣ∗N :

ΣN =


~ξ1
...
~ξN

 and Q(z) = (ΣNΣ∗N − zIN )−1 .

Proposition

The diagonal element qii = [Q]ii expresses:

qii(z) =
1

−z
(

1 + ~ξi

(
Σ∗(i)Σ(i) − zIn

)−1
~ξ∗i

)

where Σ(i) is matrix Σ with row ~ξi removed:

Σ(i) =


...

~ξi−1
~ξi+1

...
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Linear Algebra II: Rank-one perturbation

Let ~u a N × 1 vector. Notice that ~u~u∗ is a rank-one N ×N matrix.

Proposition

I Let A be a N ×N matrix then:∣∣∣∣ 1

N
Trace(A + ~u~u∗ − zIN )−1 −

1

N
Trace(A− zIN )−1

∣∣∣∣ ≤ 1

N=(z)

Conclusion

Asymptotically, normalized trace of the resolvent not sensitive to rank-one perturbations.
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Linear Algebra III: Stieltjes transform property

The Stieltjes transforms associated to 1
n

XNX∗N and 1
n

X∗NXN write

gn(z) =
1

N
Trace

(
1

n
XNX∗N − zIN

)−1

, g̃n(z) =
1

n
Trace

(
1

n
X∗NXN − zIn

)−1

.

Spectra of 1
n

XNX∗N and 1
n

X∗NXN coincide up to the null eigenvalue. As an
important consequence

g̃n(z) = cngn(z) + (1− cn)

(
−

1

z

)
cn =

N

n

Proof: Let for example n > N then

spectrum

(
1

n
X

∗
NXN

)
= spectrum

(
1

n
XNX

∗
N

)
∪ {0}

where 0 has multiplicity n−N . Hence

g̃n(z) =
1

n

n∑
i=1

1

λi − z
=

1

n

N∑
i=1

1

λi − z
+

1

n

n∑
i=N+1

(
−

1

z

)

=
N

n
gn(z) +

n−N
n

(
−

1

z

)
= cngn(z) + (1− cn)

(
−

1

z

)

34



Probability theory: Convergence of quadratic forms

Let
~x = (x1, · · · , xN ) with Exi = 0 Ex2

i = σ2

the xi’s being i.i.d. Consider the quadratic form 1
N
~xA~x∗

Proposition

Let matrix A be deterministic or independent from ~x

1. then

E~x
{

1

N
~xA~x∗

}
=
σ2

N
TraceA

2. and
1

N
~xA~x∗ −

σ2

N
TraceA −−−−→

N→∞
0 .
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Let’s summarize ..

In order to handle the normalized trace of the resolvent (= Stieltjes transform of the
associated spectral measure), four important arguments are:

I Expression of the diagonal element of the resolvent

qii(z) =
1

−z
(

1 + ~ξi

(
Σ∗(i)Σ(i) − zIn

)−1
~ξ∗i

)
I Robustness to rank-one perturbation

1

N
Trace(A + ~u~u∗ − zIN )−1 ≈

1

N
Trace(A− zIN )−1 as N →∞ .

I Stieltjes transform property

g̃n(z) = cngn(z) + (1− cn)

(
−

1

z

)
I Approximation of quadratic forms

1

N
~xA~x∗ ≈

σ2

N
Trace(A) as N →∞ .
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Approximate fixed-point equation I

Diagonal elements

Denote by

qii(z) =

[(
1

n
XNX∗N − zIN

)−1
]
ii

and q̃jj(z) =

[(
1

n
X∗NXN − zIn

)−1
]
jj

the diagonal elements of the resolvents.

Stieltjes transforms

The Stieltjes transforms associated to 1
n

XNX∗N and 1
n

X∗NXN write

gn(z) =
1

N
Trace

(
1

n
XNX∗N − zIN

)−1

=
1

N

N∑
i=1

qii(z) ,

g̃n(z) =
1

n
Trace

(
1

n
X∗NXN − zIn

)−1

=
1

n

n∑
j=1

q̃jj(z) .
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Approximate fixed-point equation II

For simplicity, denote by YN = XN√
n

and recall

gn(z) =
1

N
Trace (YNY∗N − zIN )−1 =

1

N

N∑
i=1

qii(z)

We have:

qii(z)
(a)
=

1

−z
(

1 + ~ξi

(
Y∗

(i)
Y(i) − zIn

)−1
~ξ∗i

)
(b)
≈

1

−z
(

1 + σ2

n
Trace

(
Y∗

(i)
Y(i) − zIn

)−1
)

(c)
≈

1

−z
(

1 + σ2

n
Trace (Y∗Y − zIn)−1

) =
1

−z
(

1 + σ2

n

∑n
j=1 q̃jj(z)

)

I where (a) follows from the expression of the diagonal element of the resolvent,

I where (b) follows from asymptotic behaviour of quadratic form;

I where (c) follows from rank-one perturbation argument.
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Approximate fixed-point equation III

We have

qii(z) ≈
1

−z
(

1 + σ2

n

∑n
j=1 q̃jj(z)

) = −
1

z(1 + σ2g̃n(z))

Summing up,

gn(z) =
1

N

N∑
i=1

qii(z) ≈ −
1

z(1 + σ2g̃n(z))

(d)
=

1

−z
[
1 + σ2

{
cngn(z) + (1− cn)

(
− 1
z

)}]
=

1

σ2(1− cn)− z − zσ2cngn(z)

I where (d) follows from the fact that

g̃n(z) = cngn(z) + (1− cn)

(
−

1

z

)
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Approximate fixed-point equation IV

we finally obtain the approximate equation

gn(z) ≈
1

σ2(1− cn)− z − zσ2cngn(z)

This method can be referred to as:

finding the limiting equation by approximating the diagonal elements of the resolvent
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The limiting fixed-point equation

Theoretical arguments (tightness and compacity) yield the convergence

gn(z)
a.s.−−−−−−→

N,n→∞
gM̌P(z)

where the Stieltjes transform gM̌P satisfies the fixed-point equation:

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

or equivalently the following second-degree polynomial:

zcσ2g2
M̌P

+ [z − σ2(1− c)]gM̌P + 1 = 0 .

I We also refer to the fixed-point equation as the canonical equation.
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Solving the limiting equation

Explicit Stieltjes transform

Given the second-degree polynomial zcσ2g2
M̌P

+ [z − σ2(1− c)]gM̌P + 1 = 0 ,

an explicit solution is given by

gM̌P(z) =
−(z + σ2(c− 1)) +

√
(z − b)(z − a)

2zcσ2

with a = σ2(1−
√
c)2 and b = σ2(1 +

√
c)2 and where

√
(·) refers to the branch of

the square root function for which gM̌P is a Stieltjes transform.

Marčenko-Pastur’s distribution

The inverse formula

PM̌P[a, b] =
1

π
lim
y↓0
=
∫ b

a
gM̌P(x+ iy) dx

can be used to find:

PM̌P(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πσ2xc
1[a,b](x) dx
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Marčenko-Pastur’s Theorem: Summary

I Consider the model 1
n

XNX∗N , then its spectral measure satisfies:

a. s. LN =
1

N

N∑
i=1

δλi
L−−−−−−→

N,n→∞
PM̌P .

I Instead of directly working on LN , we consider its Stieltjes tranform

gn(z) =
1

N
Trace

(
1

n
XNX∗n − zIN

)−1

,

then prove that it satisfies the approximate fixed-point equation

gn(z) ≈
1

σ2(1− cn)− z − zσ2cngn(z)

and that it converges to the solution gM̌P of the canonical equation

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

I Computing explicitely gM̌P and inverting it yields finally the formula for PM̌P.
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Complement: the isotropic Marčenko-Pastur theorem
I While proving M̌P’s theorem, we have seen that

gn(z) =
1

N
Trace QN (z) −−−−−−→

N,n→∞
gM̌P(z) for z ∈ C \ R+ .

Isotropic M̌P theorem

I let ~aN and ~bN be N × 1 deterministic vectors such that

sup
n≥1
‖~aN‖ , sup

n≥1
‖~bN‖ ≤ K <∞

then

~a∗NQN (z)~bN − 〈~aN , ~bN 〉gM̌P(z) −−−−−−→
N,n→∞

0 for z ∈ C \ R+ ,

where 〈~aN , ~bN 〉 = ~a∗N
~bN .

I In particular, if ~uN is N × 1 unitary, i.e.

〈~uN , ~uN 〉 = ‖~uN‖2 = 1

then

~u∗NQN (z)~uN −−−−−−→
N,n→∞

gM̌P(z) for z ∈ C \ R+ .

Hence the name isotropic: the limit does not depend on the direction ~uN ..
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Large covariance matrices

The model

I Consider a N × n matrix XN with i.i.d. entries

EXij = 0 , E|Xij |2 = 1 .

I Let RN be a deterministic N ×N nonnegative definite hermitian matrix.

I Consider
YN = R

1/2
N XN .

Matrix YN is a n-sample of N -dimensional vectors:

YN = [Y·1 · · · Y·n] with Y·1 = R
1/2
N X·1 and EY·1Y∗·1 = RN .

I RN often called Population covariance matrix.

Objective

To describe the limiting spectrum of 1
n

YNY∗N as N,n→∞.

Remark

I If N fixed and n→∞ then 1
n

YNY∗N −→ RN
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Guessing the canonical equation I: diagonal case

I Consider first the case where RN is diagonal:

RN = diag (ρi , i = 1 : N) .
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Guessing the canonical equation I: diagonal case

I Consider first the case where RN is diagonal:

RN = diag (ρi , i = 1 : N) .

I The method of approximating the diagonal elements of the resolvent yields

gn(z) =
1

N

N∑
i=1

qii(z)

=
1

N

N∑
i=1

1

(1− cn)ρi − z − zcnρign(z)
+ εN , cn =

N

n

=
1

N
Trace [(1− cn)RN − zIN − zcngn(z)RN ]−1 + εN
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Guessing the canonical equation I: diagonal case

I Consider first the case where RN is diagonal:

RN = diag (ρi , i = 1 : N) .

I The method of approximating the diagonal elements of the resolvent yields

gn(z) =
1

N

N∑
i=1

qii(z)

=
1

N

N∑
i=1

1

(1− cn)ρi − z − zcnρign(z)
+ εN , cn =

N

n

=
1

N
Trace [(1− cn)RN − zIN − zcngn(z)RN ]−1 + εN

Hence the canonical equation (unknown tN ):

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1
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Guessing the canonical equation II: non-diagonal cases

Gaussian entries

Assume that the entries of XN are N (0, 1) i.i.d. and consider the spectral
decomposition of matrix

RN = O∗NΛNON

Due to Gaussian unitary invariance,

spectrum

(
1

n
R

1/2
N XNX∗NR

1/2
N

)
= spectrum

(
1

n
Λ

1/2
N X̃N X̃∗NΛ

1/2
N

)
where X̃N has N (0, 1) i.i.d. entries. Remember L(XN ) = L(ONXN )!

For Gaussian entries, sufficient to consider diagonal population covariance matrices RN

Non-Gaussian entries

I Let XN = [~x1, · · · , ~xn] the matrix with non-gaussian entries

I Let XNN = [~xN1 , · · · , ~xNn ] the matrix with N (0, 1) i.i.d. entries

Interpolate between XN and XNN by changing one column at a time
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Guessing the canonical equation III

I We have proved so far that the Stieltjes transform gn(z) approximately satisfies
the canonical equation (unknown tN ):
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I We have proved so far that the Stieltjes transform gn(z) approximately satisfies
the canonical equation (unknown tN ):
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Guessing the canonical equation III

I We have proved so far that the Stieltjes transform gn(z) approximately satisfies
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the canonical equation (unknown tN ):

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1

Problem: this equation depends on N !

Instead of having a single equation which describes the limit, we handle a se-
quence of equations whose solutions are refered to as deterministic equivalents.
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Deterministic equivalents

I Let tN be the Stieltjes transform solution of the canonical equation

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1

Consider associated probability PN defined by

PN = (Stieltjes transform)−1(tN ) i.e. tN (z) =

∫ PN ( d λ)

λ− z

I Then tN and PN are the determinitic equivalents of gn and LN :

gN (z)− tN (z)
a.s.−−−−−−→

N,n→∞
0 ,

1

N

N∑
i=1

f(λi)−
∫
f(λ)PN (d λ)

a.s.−−−−−−→
N,n→∞

0 ,
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Genuine limits I

I In the case of Marčenko and Pastur, we have a single equation and a single limit

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

I In the case of large covariance matrices, we have a sequence of equations:

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1

and we speak of deterministic equivalents rather than genuine limits.

I Notice that all these equations only depend on the spectrum of RN ; denote by

LR
N =

1

N

N∑
i=1

δλi(RN )

the spectral measure of matrix RN ; assume the following convergence:

LR
N

a.s.−−−−−−→
N,n→∞

PR

where PR is a given probability distribution.
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Genuine limits II

Theorem

If
LR
N

a.s.−−−−−−→
N,n→∞

PR

then the sequence of canonical equations ”converges” to the following fixed-point
equation

t(z) =

∫ PR(d λ)

(1− c)λ− z − zct(z)λ
where t(z) =

∫ P∞( d λ)

λ− z

and the following convergences hold true

gN (z)
a.s.−−−−−−→

N,n→∞
t(z) ,

1

N

N∑
i=1

f(λi)
a.s.−−−−−−→

N,n→∞

∫
f(λ)P∞(d λ) ,

where the λi’s are the eigenvalues of 1
n

YNY∗N .
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Remarks

1. In general, there is no explicit solution to the equation

t(z) =

∫ PR(d λ)

(1− c)λ− z − zct(z)λ

2. In the theory of free probability, probability measure

P∞ = (ST )−1(t)

is the free multiplicative convolution of PR with PM̌P:

P∞ = PR � PM̌P
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Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}
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Figure: Plot of the Limiting Spectral Measure for
c = 0.01
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Figure: Plot of the Limiting Spectral Measure for
c = 0.1
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1

3
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Simulations
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Figure: Plot of the Limiting Spectral Measure for
c = 0.25
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Simulations
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Figure: Plot of the Limiting Spectral Measure for
c = 0.275

t(z) =
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3
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}
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Simulations
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Figure: Plot of the Limiting Spectral Measure for
c = 0.35
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Simulations
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Figure: Plot of the Limiting Spectral Measure for
c = 0.6
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Example: Marčenko-Pastur’s model

In the case of Marčenko-Pastur, RN = σ2IN and many things simplify:

I The deterministic equivalent of gn(z) is tN (z), solution of:

tN (z) =
1

σ2(1− cN )− z − zcNσ2tN (z)
with cN =

N

n
.

I The deterministic equivalent of LN = 1
N

∑N
i=1 δλi is

PN
M̌P

(dx) =

(
1−

1

cN

)+

δ0(dx) +

√
(bN − x)(x− aN )

2πσ2xcN
1[a,b](x) dx

with aN = σ2(1−√cN )2 and bN = σ2(1 +
√
cN )2 .

I Of course, all the genuine limits are obtained by replacing cN = N
n

by c = lim N
n

.
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Summary
I Consider Large Covariance Matrices

1

n
YNY∗N with YN = R

1/2
N XN

which model n samples of of N -dimensional observations Y·i with covariance

cov(Y·i) = RN .

in the large dimensional regime where N ∝ n .

I The spectrum is described by a sequence of fixed-point equations

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1

and we consider the associated deterministic equivalents

gn(z) ∼ tN (z) , PN = (ST )−1(tN ) ∼ LN ,

I If the spectrum of RN converges, we end up with a single fixed-point equation

t(z) =

∫ PR(d λ)

(1− c)λ− z − zct(z)λ

and genuine limits gn(z)→ t(z) and LN → (ST )−1(t).
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Introduction

The largest eigenvalue in M̌P model

Given a N × n matrix XN with i.i.d. entries EXij = 0 and E|Xij |2 = σ2,

LN

(
1

n
XNX∗N

)
−−−−−−→
N,n→∞

PM̌P

where PM̌P has support

SM̌P = {0} ∪
[
σ2(1−

√
c)2 , σ2(1 +

√
c)2
]︸ ︷︷ ︸

bulk

(remove the set {0} if c < 1)

Theorem

I Let E|Xij |4 <∞, then:

λmax

(
1

n
XNX∗N

)
a.s.−−−−−−→

N,n→∞
σ2(1 +

√
c)2 .

Message: The largest eigenvalue converges to the right edge of the bulk.
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Spiked Models I

Definition

Let ΠN be a small perturbation of the identity:

ΠN = IN + PN where PN = θ1~u1~u
∗
1 + · · ·+ θk~uk~u

∗
k

where k is independent of the dimensions N,n.

Consider

X̃N = Π
1/2
N XN

This model will be refered to as a (multiplicative) spiked model.

Think of ΠN as

ΠN =



1 + θ1
. . .

1 + θk
1

. . .



Very important: The number k of perturbations is finite

59



Spiked Models II

Remarks

I The spiked model is a particular case of large covariance matrix model with

RN = IN +
k∑
`=1

θ`~u`~u
∗
`

I There are additive spiked models: X̌N = XN + AN where AN is a matrix with
finite rank.

I Spiked models have been introduced by Iain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis,
Annals of Statistics, 2001.

to take into account the fact that in many datasets, a small number of
eigenvalues is ”far away” the bulk of the other eigenvalues

Objective

I What is the influence of ΠN over LN

(
1
n

X̃N X̃∗N

)
?

None!

I What is the influence of ΠN over λmax

(
1
n

X̃N X̃∗N

)
?

Well, it depends!
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Simulations I: Single spikes
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 0.1
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Simulations I: Single spikes
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 1
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 2
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 3
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Observation #1

If the strength θ of the perturbation PN is large enough, then the limit of

λmax

(
1
n

X̃N X̃∗N

)
is strictly larger than the right edge of the bulk.
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Simulations II: Spectral measure
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Simulations II: Spectral measure
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Simulations III: Multiple Spikes
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Simulations III: Multiple Spikes
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Figure: Spiked model - Two spikes
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Simulations III: Multiple Spikes
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Observation # 2

Whathever the perturbations, the spectral measure converges toward Marčenko-Pastur
distribution
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The limiting spectral measure I

Theorem

The following convergence holds true: LN

(
1
n

X̃N X̃∗N

)
a.s.−−−−−−→

N,n→∞
PM̌P .

Remark

The limiting spectral measure is not sensitive to the presence of spikes
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The limiting spectral measure II

Proof

The spiked model is a particular case of large covariance matrix model with

RN = IN +
k∑
`=1

θ`~u`~u
∗
`

Consider the spectral measure of RN (orthogonal eigenvectors for the perturbations
assumed):

LR
N =

1

N

k∑
i=1

δ1+θi +
1

N

N∑
i=k+1

δ1 −−−−−−→
N,n→∞

PR = δ1

hence the limiting canonical equation

t(z) =

∫ PR(d λ)

(1− c)λ− z − zct(z)λ
=

1

(1− c)− z − zct(z)

⇔ zct2 + [z − (1− c)]t + 1 = 0

⇒ We recognize Marčenko-Pastur canonical equation.
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Behaviour of the largest eigenvalue
We consider the following spiked model:

X̃N = (IN + θ~u~u∗)1/2 XN with ‖~u‖ = 1 .

which corresponds to a rank-one perturbation.

Theorem

Recall that c = limN,n→∞
N
n

.

I if θ ≤
√
c then

λmax = λmax

(
1

n
X̃N X̃∗N

)
a.s.−−−−−−→

N,n→∞
σ2(1 +

√
c)2

I if θ >
√
c then

λmax
a.s.−−−−−−→

N,n→∞
σ2(1 + θ)

(
1 +

c

θ

)
> σ2(1 +

√
c)2
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Phase transition Phenomenon
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I If θ ≤
√
c then

λmax

(
1

n
X̃N X̃∗N

)
−−−−−−→
N,n→∞

σ2(1 +
√
c)2 .
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I If θ ≤
√
c then

λmax

(
1

n
X̃N X̃∗N

)
−−−−−−→
N,n→∞

σ2(1 +
√
c)2 .

Below the threshold
√
c, λmax

(
1
n

X̃N X̃∗N

)
asymptotically sticks to the bulk.
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I if θ >
√
c then

lim
N,n

λmax

(
1

n
X̃N X̃∗N

)
= σ2(1 + θ)

(
1 +

c

θ

)
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Phase transition Phenomenon
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I if θ >
√
c then

lim
N,n

λmax

(
1

n
X̃N X̃∗N

)
= σ2(1 + θ)

(
1 +

c

θ

)
> σ2

(
1 +
√
c
)2

Above the threshold
√
c, λmax

(
1
n

X̃N X̃∗N

)
asymptotically separates from the bulk.
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Strategy of proof

1. We first express a condition for which

λmax

(
1

n
X̃N X̃∗N

)
separates from the bulk and refer to it as the determinant condition

2. Relying on Large Random Matrix theory, we simplify this condition and obtain

the asymptotic condition

3. We finally conclude, obtain the condition θ >
√
c for which the limit of

λmax

(
1
n

X̃N X̃∗N

)
separates from the bulk, and compute this limit.

Notations

I Marčenko-Pastur model

ZN =
1

n
XNX∗N and QN (z) = (−zIN + YN )−1

I Spiked model

X̃N = Π1/2XN = (IN + θ~u~u∗)1/2 XN and Z̃N =
1

n
X̃N X̃∗N
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The determinant condition I

We wish to find

I λθ eigenvalue of the spiked model

Z̃N =
1

n
Π1/2XNX∗NΠ1/2

I λθ not an eigenvalue of M̌P model

ZN =
1

n
XNX∗N

Otherwise stated

det
(
−λθIN + Z̃N

)
= 0 but det

(
−λθIN + ZN

)
6= 0

Inverse of a rank-one perturbation of the identity

Recall that
ΠN = IN + θ~u~u∗

Standard results from linear algebra yield

Π−1
N = (IN + θ~u~u∗)−1 = IN −

θ

1 + θ
~u~u∗
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The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + ZN

)
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + ZN

)
= 0

⇔ det

(
−λθ

(
IN −

θ

1 + θ
~u~u∗

)
+ ZN

)
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + ZN

)
= 0

⇔ det

(
−λθ

(
IN −

θ

1 + θ
~u~u∗

)
+ ZN

)
= 0

⇔ det

(
−λθIN + ZN + λθ

θ

1 + θ
~u~u∗

)
= 0

74



The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + ZN

)
= 0

⇔ det

(
−λθ

(
IN −

θ

1 + θ
~u~u∗

)
+ ZN

)
= 0

⇔ det

(
−λθIN + ZN + λθ

θ

1 + θ
~u~u∗

)
= 0

⇔ det

[(
−λθIN + ZN

)(
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

)]
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + ZN

)
= 0

⇔ det

(
−λθ

(
IN −

θ

1 + θ
~u~u∗

)
+ ZN

)
= 0

⇔ det

(
−λθIN + ZN + λθ

θ

1 + θ
~u~u∗

)
= 0

⇔ det

[(
−λθIN + ZN

)(
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

)]
= 0

⇔ det

[
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

]
= 0

74



The determinant condition II

Let’s go for simple computations:

det
(
−λθIN + Z̃N

)
= 0 ⇔ det

(
−λθIN + Π

1/2
N ZNΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + ZN

)
= 0

⇔ det

(
−λθ

(
IN −

θ

1 + θ
~u~u∗

)
+ ZN

)
= 0

⇔ det

(
−λθIN + ZN + λθ

θ

1 + θ
~u~u∗

)
= 0

⇔ det

[(
−λθIN + ZN

)(
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

)]
= 0

⇔ det

[
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

]
= 0

Interest of this expression

In this equation, perturbation features θ and ~u are separated from the resolvent of M̌P
model (non-spiked model)
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The determinant condition III

Recall the condition

det

[
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

]
= 0

Matrix

λθ
θ

1 + θ
~u~u∗QN (λθ)

I has rank one,

I admits necessarily eigenvalue -1
(and eigenvalue 0 with multiplicity N − 1)

Hence the determinant condition writes

det

[
IN + λθ

θ

1 + θ
~u~u∗QN (λθ)

]
= 0

⇔ Trace

{
λθ

θ

1 + θ
~u~u∗QN (λθ)

}
= −1

⇔ λθ ~u∗QN (λθ)~u = −
1 + θ

θ
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The asymptotic condition I

Recall the condition

λθ~u∗QN (λθ)~u = −
1 + θ

θ

Asymptotic simplification

~u∗QN (λθ)~u −−−−−−→
N,n→∞

gM̌P

(
λθ
)
.

Hence the final form of the condition

λθgM̌P

(
λθ
)

= −
1 + θ

θ
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The asymptotic condition II

I We introduce the following function ρ(z):

ρ(z) = 1 + z g(z)

I Let ρM̌P associated to the Stieltjes transform:

ρM̌P(z) = 1 + zgM̌P(z) .

Then the condition over λθ writes:

λθgM̌P

(
λθ
)

= −
1 + θ

θ
⇔ ρM̌P(λθ)− 1 = −

1 + θ

θ

⇔ ρM̌P

(
λθ
)

= −
1

θ
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The asymptotic condition III

Plot of rho_MP

σ2(1 + c)2

−
1
c

Figure: Plot of ρM̌P on (σ2(1 +
√
c)2,∞)

The function ρM̌P admits an explicit expression on (σ2(1 +
√
c)2,∞)

ρM̌P(x) = 1 +
1

2c

{
(1− x− c) +

√
(1− x− c)2 − 4cx

}
(σ2 = 1)

78



The asymptotic condition III

Plot of rho_MP

σ2(1 + c)2

−
1
c

−
1
θ

Figure: Plot of ρM̌P on (σ2(1 +
√
c)2,∞)

The asymptotic condition is satisfied if

ρM̌P

(
λθ
)

= −
1

θ
⇔ −

1

θ
> −

1
√
c
⇔ θ >

√
c
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Computing the limit λθ

We have

ρM̌P

(
λθ
)

= −
1

θ
⇔ λθ = ρ−1

M̌P

(
−

1

θ

)
We therefore need to inverse ρM̌P.

I Using Marčenko-Pastur equation and the relation between gM̌P and ρM̌P

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

ρM̌P(z) = 1 + zgM̌P(z)

we get

z =
σ2

ρM̌P(z)

(
ρM̌P(z)− 1

) (
1− cρM̌P(z)

)
I Replacing now z = ρ−1

M̌P

(
− 1
θ

)
into the equation yields:

λθ = ρ−1

M̌P

(
−

1

θ

)
= σ2(1 + θ)

(
1 +

c

θ

)
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Spiked model eigenvectors I

I Consider the following N × n spiked model:

X̃N = (IN + θ~u~u∗)1/2 XN with ‖~u‖ = 1 ,

= Π1/2XN

where XN has i.i.d. 0/σ2 entries.
I Let ~vmax be the eigenvector associated to λmax, the largest eigenvalue of the

covariance matrix associated to X̃N :(
1

n
X̃N X̃∗N

)
~vmax = λmax~vmax

Question

I What is the behavior of ~vmax as N,n→∞ in the regime where

N

n
→ c ∈ (0,∞)?

Reminder

Behaviour of largest eigenvalue λmax well-understood:

I if θ ≤
√
c then λmax → σ2(1 +

√
c)2, the right edge of M̌P bulk.

I if θ >
√
c then λmax → σ2(1 + θ)(1 + c/θ), i.e. λmax separates from the bulk.
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Spiked model eigenvectors II

Preliminary observations

1. Let N finite, n→∞, then

1

n
X̃N X̃∗N = Π1/2

(
1

n
XNX∗N

)
Π1/2 −−−−→

n→∞
Π

Largest eigenvalue of Π is 1 + θ; associated eigenvector is ~u:

Π~u = (IN + θ~u~u∗) ~u = (1 + θ)~u .

As a consequence:
~vmax −−−−→

n→∞
~u .

2. If

N,n→∞ ,
N

n
→ c ,

then dim(~vmax) = N ↗∞ . We therefore consider the projection

~vmax~v
∗
max

on ~vmax on a generic deterministic vector ~aN , i.e.

~a∗N~vmax~v
∗
max~aN
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Spiked model eigenvectors III

Theorem

Let ~aN be a deterministic vector with norm 1, then

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−−→

N,n→∞
0 .

Remarks

I If N finite, n→∞, then

~a∗N~vmax~v
∗
max~aN − ~a∗N~u~u

∗~aN
a.s.−−−−−−→

N,n→∞
0 .

I The large dimension N
n
→ c induces a correction factor:

κ(c) =
(

1−
c

θ2

)(
1 +

c

θ

)−1

I Of course κ(c)→ 1 if c→ 0.
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Proof I

Reminder from complex analysis

We need a simple result from complex analysis:

1

2iπ

∮
C−

dz

z
= 1

if C− is a contour (take a circle of radius 1) enclosing counterclockwise 0.

I Proof:

let z = eiθ :
1

2iπ

∮
C−

dz

z
=

1

2iπ

∫ 2π

0

d(eiθ)

eiθ
=

1

2iπ

∫ 2π

0

ieiθdθ

eiθ
= 1

In particular, if C+ is a contour enclosing λ clockwise, then:

1

2iπ

∮
C+

dz

λ− z
= 1

(let C+ be a circle (λ+ ρeiθ; 0 ≤ θ ≤ 2π) and perform a change of variable).

If C+ does not enclose λ, then the integral equals zero.
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Proof II

Our objective

To express ~vmax with the help of the resolvent Q̃n(z) =
(

1
n

X̃N X̃∗N − zIN
)−1

By the spectral theorem,

1

n
X̃N X̃∗N = ON

 λmax

. . .

λN

O∗N

= [~vmax ON−1]

 λmax

. . .

λN

[ ~v∗max
O∗N−1

]

In particular,

(
1

n
X̃N X̃∗N − zIN

)−1

= [~vmax ON−1]


1

λmax−z
. . .

1
λN−z

[ ~v∗max

O∗N−1

]

Recall that
I if θ >

√
c, λmax separates from the bulk

and consider a contour C+ exclusively enclosing the eigenvalue λmax.
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Proof III

We have

~a∗N~vmax~v
∗
max~aN =

1

2iπ

∮
C+
~a∗N Q̃n(z)~aN dz

Indeed,

1

2iπ

∮
C+
~a∗N Q̃n(z)~aN dz

=
1

2iπ

∮
C+
~a∗N [~vmax ON−1]


1

λmax−z
. . .

1
λN−z

[ ~v∗max
O∗N−1

]
~aN dz

= ~a∗N [~vmax ON−1]


1

2iπ

∮
1

λmax−z
dz

. . .
1

2iπ

∮
1

λN−z
dz

[ ~v∗max
O∗N−1

]
~aN

= ~a∗N [~vmax ON−1]

 1

. . .

0

[ ~v∗max
O∗N−1

]
~aN

= ~a∗N~vmax~v
∗
max~aN .
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Proof IV

Recall
1

2iπ

∮
C+
~a∗N Q̃n(z)~aN dz

and temporarily forget about the integral. Our objective now is:

to find a new formulation of ~a∗N Q̃n(z)~aN and clearly separate the contribution from
the perturbation (~u and θ) and the resolvent Qn(z) from the non-pertubated model.

Introduce the notations

ZN =
1

n
XNX∗N and Z̃N =

1

n
X̃N X̃∗N

and recall the formula for the inverse of a rank-one perturbation:

(A + ~u~u∗)−1 = A−1 −
A−1~u~u∗A−1

1 + ~uA~u∗
,

In particular

Π−1 = (IN + θ~u~u∗)−1 = IN −
θ

1 + θ
~u~u∗
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
ZN − z

(
IN −

θ

1 + θ
~u~u∗

))−1

Π−1/2
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
ZN − z

(
IN −

θ

1 + θ
~u~u∗

))−1

Π−1/2

= Π−1/2(ZN − zIN + ξ~u~u∗)−1Π−1/2 where ξ = z
θ

1 + θ
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
ZN − z

(
IN −

θ

1 + θ
~u~u∗

))−1

Π−1/2

= Π−1/2(ZN − zIN + ξ~u~u∗)−1Π−1/2 where ξ = z
θ

1 + θ

= Π−1/2

(
Qn −

Qnξ~u~u∗Qn

1 + ξ~u∗Qn~u

)
Π−1/2
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
ZN − z

(
IN −

θ

1 + θ
~u~u∗

))−1

Π−1/2

= Π−1/2(ZN − zIN + ξ~u~u∗)−1Π−1/2 where ξ = z
θ

1 + θ

= Π−1/2

(
Qn −

Qnξ~u~u∗Qn

1 + ξ~u∗Qn~u

)
Π−1/2

Hence

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

88



Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
ZN − z

(
IN −

θ

1 + θ
~u~u∗

))−1

Π−1/2

= Π−1/2(ZN − zIN + ξ~u~u∗)−1Π−1/2 where ξ = z
θ

1 + θ

= Π−1/2

(
Qn −

Qnξ~u~u∗Qn

1 + ξ~u∗Qn~u

)
Π−1/2

Hence

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

Not so ugly!
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Proof V

Q̃n(z) =
(
Π1/2Z̃NΠ1/2 − zIN

)−1

= Π−1/2
(
ZN − zΠ−1

)−1
Π−1/2

= Π−1/2
(
ZN − z(IN + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
ZN − z

(
IN −

θ

1 + θ
~u~u∗

))−1

Π−1/2

= Π−1/2(ZN − zIN + ξ~u~u∗)−1Π−1/2 where ξ = z
θ

1 + θ

= Π−1/2

(
Qn −

Qnξ~u~u∗Qn

1 + ξ~u∗Qn~u

)
Π−1/2

Hence

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

Not so ugly! And we have separated the contribution of the perturbation from the
non-perturbated model.
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Proof VI

Recall

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u
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Proof VI

Recall

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Qn(z)Π1/2~aN =??
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Proof VI

Recall

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Qn(z)Π1/2~aN = 0

Why?
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Proof VI

Recall

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Qn(z)Π1/2~aN = 0

Why? Because

1. the contour only encloses λmax(Z̃n) which is away from the bulk,

2. but all the eigenvalues of Zn are in the bulk. Hence:

1

2iπ

∮
C+

1

λi(Zn)− z
dz = 0.
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Proof VI

Recall

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Qn(z)Π1/2~aN = 0

Why? Because

1. the contour only encloses λmax(Z̃n) which is away from the bulk,

2. but all the eigenvalues of Zn are in the bulk. Hence:

1

2iπ

∮
C+

1

λi(Zn)− z
dz = 0.

Last step is to simplify the remaining expression by systematically use the large N,n
quadratic form approximation:

~c ∗Qn(z)~d− ~c ∗ ~dgM̌P(z)
a.s.−−−−−−→

N,n→∞
0
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Proof VI

Recall

~a∗N Q̃n(z)~aN = ~a∗NΠ1/2Qn(z)Π1/2~aN − ξ
~a∗NΠ1/2Qn~u~u∗QnΠ1/2~aN

1 + ξ~u∗Qn~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Qn(z)Π1/2~aN = 0

Why? Because

1. the contour only encloses λmax(Z̃n) which is away from the bulk,

2. but all the eigenvalues of Zn are in the bulk. Hence:

1

2iπ

∮
C+

1

λi(Zn)− z
dz = 0.

Last step is to simplify the remaining expression by systematically use the large N,n
quadratic form approximation:

~c ∗Qn(z)~d− ~c ∗ ~dgM̌P(z)
a.s.−−−−−−→

N,n→∞
0 ⇒

 ~a∗NΠ1/2Qn~u ≈ ~a∗NΠ1/2~u gM̌P(z)

~u∗QnΠ1/2~aN ≈ ~u∗Π1/2~aN gM̌P(z)
~u∗Qn~u ≈ gM̌P(z)
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Proof VII

After simplifications,

~a∗N~vmax~v
∗
max~aN ≈ −

1

2iπ

∮
C+
|~a∗NΠ1/2~u|2

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

= −
~a∗N~u~u

∗~aN
1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

It remains to compute the correction factor

−
1

1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

by residue calculus (not that difficult).

A minor miracle occurs:This factor admits a closed form formula!

−
1

1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz =

(
1−

c

θ2

)(
1 +

c

θ

)−1

Finally:

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−−→

N,n→∞
0 .
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Summary I

Spiked model

Let

I ΠN a small perturbation of the identity [Example: ΠN = IN + θ~u~u∗]

I XN a N × n matrix with i.i.d. entries

then X̃N = Π
1/2
N XN is a (multiplicative) spiked model

Global regime

The spectral measure LN

(
1
N

X̃N X̃∗N

)
converges to Marčenko-Pastur distribution:

almost surely, LN

(
1

N
X̃N X̃∗N

)
L−−−−−−→

N,n→∞
PM̌P

Largest eigenvalue

I if θ ≤
√
c , then λmax

(
1
N

X̃N X̃∗N

)
converges to the right edge of the bulk

I if θ >
√
c , then λmax

(
1
N

X̃N X̃∗N

)
separates from the bulk

λmax

(
1

N
X̃N X̃∗N

)
→ σ2(1 + θ)

(
1 +

c

θ

)
> σ2(1 +

√
c)2
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Summary II

1. Expression of ~vmax with the help of the resolvent

~a∗N~vmax~v
∗
max~aN =

1

2iπ

∮
C+
~a∗N Q̃n(z)~aN dz

2. Convenient expression of ~vmax where the contribution of the perturbation is
separated from the resolvent of the non-perturbated model (M̌P)

~a∗N~vmax~v
∗
max~aN ≈ −

~a∗N~u~u
∗~aN

1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

3. Residue calculus to find the final form

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−−→

N,n→∞
0 .
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The hypothesis testing problem

Statistical Setup

let

~y(k) =

{
σ~w(k) under H0
~h s(k) + σ~w(k) under H1

for k = 1 : n

The ~y(k)’s are n observations all either drawn under H0 or H1. Here,

I ~w(k) is a N × 1 complex gaussian white noise process:

~w(k) ∼ CN(0, IN )

I ~h is a N × 1 deterministic and unknown vector and typically represents the
propagation channel

I s(k) represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations (~y(k), 1 ≤ k ≤ n), and the associated sample covariance matrix

R̂n =
1

n
YnY∗n where Yn = [~y(1), · · · , ~y(n)] is N × n ,

the aim is to decide H0 (no signal) or H1 (single-source detection) in the case where

N

n
→ c ∈ (0, 1) i.e. Dimension N of observations ∝ size n of sample
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Neyman-Pearson procedure

Likelihood functions

Notice that Yn is a N × n matrix whose columns are i.i.d. vectors with covariance
matrix defined by

ΣN =

{
σ2IN under H0 ,

~h~h∗ + σ2IN under H1

hence the likelihood functions write

p0(YN ;σ2) =
1

(πσ2)Nn
exp

(
−
n

σ2
Trace R̂N

)
p1(YN ; ~h;σ2) =

1[
πN det

(
~h~h∗ + σ2IN

)]n exp

(
−
n

σ2
Trace R̂N

(
~h~h∗ + σ2IN

)−1
)

Neyman-Pearson

In case where σ2 and ~h are known, the
Likelihood Ratio Statistics

p1(YN ; ~h;σ2)

p0(YN ;σ2)

provides a uniformly most powerful test:

I Fix a given level α ∈ (0, 1)

I The condition over the Probability of
False Alarm P(H1 | H0) ≤ α sets the
threshold

I the maximum achievable power

1− P(H0 | H1)

is guaranteed by Neyman-Pearson.
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The GLRT

The Generalized Likelihood Ratio Test

In the case where ~h and σ2 are unknown, we use instead:

Ln =
sup

σ2,~h
p1(Yn, σ2, ~h)

supσ2 p0(Yn, σ2)

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

Ln =

(
1− 1

N

)(1−N)n(
λmax(R̂n)
1
N

Trace R̂n

)n (
1− 1

N
λmax(R̂n)
1
N

Trace R̂n

)(N−1)n

and is a deterministic function of Tn =
λmax(R̂n)
1
N

Trace R̂n
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Limit of the test statistics Tn I

Under H0

Recall Tn =
λmax(R̂n)
1
N

Trace R̂n
. We have:

λmax(R̂n)
a.s.−−−−−−→

N,n→∞
σ2(1 +

√
c)2

1

N
Trace R̂n =

1

Nn

∑
i,j

|Yij |2
a.s.−−−−−−→

N,n→∞
σ2

hence

Tn =
λmax(R̂n)
1
N

Trace R̂n

a.s.−−−−−−→
N,n→∞

(1 +
√
c)2
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Limit of the test statistics Tn II

Under H1

Let

snr =
‖~h‖2

σ2

the Signal-to-Noise (SNR) ratio.

I if snr >
√
c then

Tn
a.s.−−−−−−→

N,n→∞
(1 + snr)

(
1 +

c

snr

)
> (1 +

√
c)2

I if snr ≤
√
c then

Tn
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2
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Limit of the test statistics Tn III

Remarks

I Condition snr >
√
c is automatically fulfilled in the standard regime where

N fixed and n→∞ as c = lim
n→∞

N

n
= 0 .

I In the case N,n→∞, recall that the support of Marčenko-Pastur distribution is

[(1−
√
c)2, (1 +

√
c)2] ,

i.e.

The higher
√
c, the larger the support

One can interpret
√
c as a level of the asymptotic noise induced by the data

dimension (=asymptotic data noise).

Hence the rule of thumb

Detection occurs if snr higher than asymptotic data noise.
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Simulations
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Figure: Influence of asymptotic data noise as
√
c increases
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Simulations

N= 100 , n= 2000 , sqrt(c)= 0.223606797749979
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Simulations

N= 200 , n= 2000 , sqrt(c)= 0.316227766016838
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Simulations

N= 500 , n= 2000 , sqrt(c)= 0.5
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Simulations

N= 1000 , n= 2000 , sqrt(c)= 0.707106781186548
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Elements of proof I
I We are interested in the largest eigenvalue of the matrix model

1
n

YnY∗n
1
N

Trace(R̂n)

asymptotically equivalent to

1

n

YnY∗n
σ2

as
1

N
Trace(R̂n)

a.s.−−−−−−→
N,n→∞

σ2

I Notice that

Yn = [~y1, · · · , ~yn] with ~yi ∼ CN(0, ~h~h∗ + σ2IN )

Hence

YN =
(
~h~h∗ + σ2IN

)1/2
XN ⇒

YN

σ
=

(
IN +

~h~h∗

σ2

)1/2

XN

=

(
IN +

‖~h‖2

σ2
~u~u∗

)1/2

XN

with XN a N × n matrix having i.i.d. entries CN(0, 1) and ~u =
~h

‖~h‖

Conclusion

Spectrum of 1
n

YnY∗n follows a spiked model with rank-one perturbation
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Elements of proof II

We can now conclude:

I If snr >
√
c then

λmax

(
R̂n

)
1
N

Trace(R̂n)

(H1)−−−−−−→
N,n→∞

(1 + snr)
(

1 +
c

snr

)
> (1 +

√
c)2

and the test statistics discriminates between the hypotheses H0 and H1.

I If snr ≤
√
c then

λmax

(
R̂n

)
1
N

Trace(R̂n)

(H1)−−−−−−→
N,n→∞

(1 +
√
c)2

Same limit as under H0. The test statistics does not discriminate between the
two hypotheses.
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Fluctuations of the GLRT under H0 - I

I The exact distribution of the statistics

Ln =
λmax(R̂n)
1
N

Trace R̂n

is needed to set the threshold of the test fo a given confidence level α ∈ (0, 1):

PH0
(LN > tα) = α ,

but hard to obtain.

I We rather study the asymptotic fluctuations of Ln under the regime

N,n→∞ ,
N

n
→ c ∈ (0, 1) .

I LN is the ratio of two random variables. We need to understand

◦ the fluctuations of λmax(R̂n) under H0,

◦ the fluctuations of 1
N

Trace R̂n under H0.
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Fluctuations of the GLRT under H0 - II

Fluctuations of λmax(R̂n): Tracy-Widom distribution at rate N2/3

N2/3

ΘN

{
λmax

(
R̂n

)
− σ2(1 +

√
cn)2

}
L−−−−−−→

N,n→∞
PTW

where

cn =
N

n
and ΘN = σ2(1 +

√
cn)

(
1
√
cn

+ 1

)1/3

Otherwise stated,

λmax

(
R̂n

)
= σ2(1 +

√
cn)2 +

ΘN

N2/3
XTW + εn

where XTW is a random variable with Tracy-Widom distribution.
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Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

I its cumulative distribution function

FTW (x) = exp

{
−
∫ ∞
x

(u− x)2q2(u) du

}
I where

q′′(x) = xq(x) + 2q3(x) and q(x) ∼ Ai(x) as x→∞ .

x 7→ Ai(x) being the Airy function.

Don’t bother .. just download it

I For simulations, cf. R Package ’RMTstat’, by Johnstone et al.

I Also, Folkmar Bornemann (TU München) has developed fast matlab code
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Tracy-Widom curve
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Figure: Fluctuations of the largest eigenvalue λmax(R̂n) under H0
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Fluctuations of the GLRT under H0 - III

Fluctuations of 1
NTrace (R̂n): Gaussian distributions at rate N

N

{
1

N

N∑
i=1

λi(R̂n)− σ2

}
L−−−−−−→

N,n→∞
N (0,Γ) ,

Otherwise stated:

1

N
Trace (R̂n) =

1

N

N∑
i=1

λi(R̂n) = σ2 +

√
Γ

N
Z + εn

where Z is a random variable with distribution N (0, 1).
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Fluctuations of the GLRT under H0 - IV

Conclusion

I Fluctuations of Ln =
λmax(R̂n)
1
N

Trace R̂n
are driven by λmax(R̂n):

N2/3

Θ̃N

{
LN − (1 +

√
cn)2

} L−−−−−−→
N,n→∞

PTW with Θ̃N = (1+
√
cn)

(
1
√
cn

+ 1

)1/3

I In order to set the threshold α, we choose tnα as

tnα = (1 +
√
cn)2 +

Θ̃N

N2/3
tα

Tracy-Widom

where tαTracy-Widom is the corresponding quantile for a Tracy-Widom random
variable:

P{XTW > tα
Tracy-Widom} ≤ α.
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Power of the GLRT I

Type II error and Power of the test

Given a level of confidence α ∈ (0, 1) , the type I error defines the associate quantile
tα

PH0
(LN > tnα) ≤ α .

The type II error is defined as

PH1 (LN < tnα) ,

and the associated power of the test is defined as

PH1
(LN ≥ tnα) = 1− PH1

(LN < tnα) .

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the
GLRT is a uniformily most powerful test.

I It is therefore important to be able to compute the power of the GLRT
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Power of the GLRT II

I For fixed level of confidence α

PH0
(LN > tnα) ≤ α ,

the type II error exponentially decreases to 0.

I Indeed, we want to evaluate

PH1
(LN ≤ tnα)

= PH1

(
LN ≤ (1 +

√
c)2 +

Θ̃N

N2/3
tα

Tracy-Widom

)

= PH1

(
LN ≤ (1 +

√
c)2 +O

(
1

N2/3

))
but

LN
H1−−−−−−→

N,n→∞
(1 + snr)

(
1 +

c

snr

)
> (1 +

√
c)2 +O

(
1

N2/3

)
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Power of the GLRT III: How to compute type II error?

Asymptotically, of course .. but how exactly?

Easy but risky: The fluctuations of λmax(R̂n) under H1

Theorem

√
N
(
λmax(R̂n)− (1 + snr)

(
1 +

cn

snr

))
L−−−−−−→

N,n→∞
N (0,Γ)

Then evaluate PH1
(LN ≤ tnα) by Gaussian quantiles. Well .. not a very good

idea ..

Be serious, compute the large deviations!

I one can define its error exponent E as:

E = lim
N,n→∞

−
1

n
log PH1 (LN < tnα) .

I Hence, the type II error writes:

PH1
(LN < t(α)) ≈N,n→∞ e−nE
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Power of the GLRT IV: The error exponent

Theorem

I The type II error writes:

PH1
(LN < tnα) ≈N,n→∞ e−nE

in the sense that

E = lim
N,n→∞

−
1

n
log PH1

(LN < tα) .

I The error exponent E is fully explicit

E =
λ+ − λ∞spk

1 + snr
− (1− c) log

(
λ+

λ∞spk
− 2c

[
F+(λ+)− F+(λ∞spk)

])

Elements of proof

I Proof essentially based on the large deviations of λmax(R̂n) under H1
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Power of the GLRT V

The error exponent curve

Instead of letting the type I error fixed, it is of interest to let it go exponentially to
zero:

PH0
(LN > t(a)) ≈N,n→∞ e−na

and to compute the corresponding type II error (or its error component E(a))

PH1
(LN < t(a)) ≈N,n→∞ e−nE(a)

I The set (a,E(a)) such that

PH0 (LN > t(a)) ≈N,n→∞ e−na

PH1
(LN < t(a)) ≈N,n→∞ e−nE(a)

is called the error exponent curve and can be fully described in terms of large
deviation rate functions.
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Summary

I Consider the following hypothesis

~y(k) =

{
σ~w(k) under H0
~h s(k) + σ~w(k) under H1

for k = 1 : n

then the GLRT amounts to study

Tn =
λmax(R̂n)
1
N

Trace R̂n

I The test statistics Tn discriminates between H0 and H1 if snr =
‖~h‖2

σ2
>
√
c

I The threshold can be asymptotically determined by Tracy-Widom quantiles.

I The type II error (equivalentlty power of the test) can be analyzed via the error
exponent of the test

E = lim
N,n→∞

−
1

n
log PH1

(LN < tα) .
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.. But more to come!!!
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