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The random matrix models considered in this lecture I.

I. The narrow band array processing model.

M × N random matrices, M number of sensors, N number of
snapshots

Random matrix model Y = AS + V

V complex Gaussian i.i.d. random matrix modelling the additive noise

A the M × K matrix of ”directional vectors”, K << M number of
sources

S the K × N deterministic matrix collecting the source signals

When M and N are large and K small:

Behaviour of the largest eigenvalues and associated eigenvectors of
YY∗

N

Detection: testing K = 0 versus K = K0

Dimension reduction by PCA

Behaviour of subspace DoA estimators
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II. Wide band or spatio-temporal array processing model.

ML× N block Hankel random matrices, M number of sensors, N
number of snapshots, L a smoothing factor

Y(L) = (Y
(L)T
1 , . . . ,Y

(L)T
M )T

Each block Y
(L)
k is a L× N Hankel matrix built from the signal

(yk(n))n=1,...,N observed on sensor k

Y(L) = H(L)S(L) + V(L)

V(L) is this time a Gaussian random block Hankel matrix

The signal part H(L)S(L) is a low rank K deterministic matrix

When M , L,N are large and K small:

Behaviour of the largest eigenvalues and eigenvectors of Y(L)Y(L)∗

N

Application to detection of a wideband signal

Loading factor estimation for trained regularized spatio-temporal
Wiener filtering

Analysis of spatial smoothing schemes in narrow band array processing
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The narrow band array processing model

Observation: M–dimensional time series yn observed from
n = 1, . . . ,N

yn = Asn + vn

A = (a1, . . . , aK ) deterministic unknown rank K < M matrix

sn = (s1,n, . . . , sK ,n)T , ((sk,n)n∈Z)k=1,K are K < M non observable
deterministic ”source signals”

(vn)n∈Z additive complex white Gaussian noise such that
E(vnvHn ) = σ2IM

In matrix form

YN = (y1, . . . , yN) observation M × N matrix

SN = (s1, . . . , sN) signal K × N matrix, Rank(SN) = K .

YN = ASN + VN Information + Noise model with rank deficient
Information component.
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The narrow band array processing model

In matrix form

YN = (y1, . . . , yN) observation M × N matrix

SN = (s1, . . . , sN) signal K × N matrix, Rank(SN) = K .

YN = ASN + VN Information + Noise model with rank deficient
Information component.

The asymptotic regime.

Easier to design and study statistical inference methods in asymptotic
regimes.

If M << N: M fixed and N → +∞
If M and N are of the same order of magnitude: M → +∞,N → +∞
in such a way that cN = M

N → c∗, 0 < c∗ < +∞
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Class of problems to be addressed.

Covariance matrices of the model.

YN = ASN + VN

Empirical covariance matrix
YNY∗

N
N = 1

N

∑N
n=1 yny∗n

”True” covariance matrix E
(

YNY∗
N

N

)
= A

SNS∗
N

N A∗ + σ2IM

Extract informations on
ASNS∗

NA∗

N
from YN .

If M fixed and N → +∞, classical problems because

‖
YNY∗N
N

−
(

A
SNS∗N
N

A∗ + σ2IM

)
‖ → 0

If M → +∞,N → +∞ in such a way that cN = M
N → c∗,

0 < c∗ < +∞, this property does not hold
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Class of problems to be addressed.

Covariance matrices of the model.

YN = ASN + VN

Empirical covariance matrix
YNY∗

N
N = 1

N

∑N
n=1 yny∗n

”True” covariance matrix E
(

YNY∗
N

N

)
= A

SNS∗
N

N A∗ + σ2IM

Extract informations on
ASNS∗

NA∗

N
from YN in the asymptotic regime.

M = M(N), N → +∞ in such a way that cN = M(N)
N → c∗,

0 < c∗ < 1

Written as N → +∞
K does not scale with (M,N)

In some sense, M depends on N. We denote M × K matrix A by AN .
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Properties of the empirical covariance matrix when Y = V
(K = 0).

V =


V11 V12 . . . V1N

V21 V22 . . . V2N
...

...
...

...
VM1 VM2 . . . VMN


(Vij)1≤i≤M,1≤j≤N i.i.d. complex Gaussian random variables CN (0, σ2).

v1, v2, . . . , vN columns of V, E(vnv∗n) = σ2IM

Empirical covariance matrix:

VV∗

N
=

1

N

N∑
n=1

vnv∗n
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Behaviour of the empirical distribution of the eigenvalues of VV∗

N
for

large M and N .

λ̂1,N ≥ λ̂2,N ≥ . . . ≥ λ̂M,N eigenvalues of VV∗

N

Empirical eigenvalue distribution: µ̂N = 1
M

∑M
i=1 δ(λ− λ̂i ,N)

How behave the histograms of the eigenvalues (λ̂i ,N)i=1,...,M of VV∗

N when
M and N increase.

Well known case: M fixed, N increases i.e. cN = M
N

small

VV∗

N ' E(vnv∗n) = σ2IM by the law of large numbers.

If N >> M , the eigenvalues of VV∗

N
are concentrated around σ2.
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Illustration.

Histogram of the eigenvalues of VV∗

N
, M = 256, cN = M

N
= 1
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, σ2 = 1
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If M et N are of the same order of magnitude.(
VV∗

N

)
i ,j
→ 0 if i 6= j(

VV∗

N

)
i ,j
→ σ2 if i = j

But ‖VV∗

N − σ2IM‖ does not converge torwards 0.

The histograms of the eigenvalues of VV∗

N
tend to concentrate around

the probability density of the so-called Marcenko-Pastur distribution
MP(σ2, cN): if cN ≤ 1

pσ2,cN (λ) =
1

2πcNλ

√
[σ2(1 +

√
cN)2 − λ][λ− σ2(1−

√
cN)2]

if λ ∈ [σ2(1−
√
cN)2, σ2(1 +

√
cN)2]

= 0 otherwise

Result still true in the non Gaussian case
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Illustrations I.

Histogram of the eigenvalues of VV∗

N
, M = 256, cN = M
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Illustrations II.

Histogram of the eigenvalues of VV∗

N
, M = 256, cN = M
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Illustrations III.

Histogram of the eigenvalues of VV∗

N
, M = 256, cN = M

N
= 2/3, σ2 = 1
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More formally

1

M

M∑
k=i

ψ(λ̂i ,N) −
∫
ψ(λ)pσ2,cN (λ) dλ→ 0

Fluctuations of the linear statistics of the (λ̂i ,N)i=1,...,M .

Var
(

1
M

∑M
k=i ψ(λ̂i ,N)

)
= O( 1

N2 )

E
(

1
M

∑M
i=1 ψ(λ̂i ,N)

)
−
∫
ψ(λ)pσ2,cN (λ) dλ = O( 1

N2 )

N
[(

1
M

∑M
i=1 ψ(λ̂i ,N)

)
−
∫
ψ(λ)pσ2,cN (λ) dλ

]
→ N (0,∆)

The (λ̂i ,N)i=1,...,M do not behave at all as realizations of independent
random variables.

Ph. Loubaton (LIGM) Large random matrices Summer School, 7 June 2016 15 / 88



Finer convergence results.

Convergence of the extreme eigenvalues

λ̂1,N − σ2(1 +
√
cN)2 a.s.−−−−−→

N,M→∞
0

λ̂M,N − σ2(1−
√
cN)2 a.s.−−−−−→

N,M→∞
0

Implies the following almost sure location property of the
(λ̂i ,N)i=1,...,M .

For each ε > 0, almost surely, all the eigenvalues belong to
[σ2(1−√cN)2 − ε, σ2(1 +

√
cN)2 + ε] for N large enough.

Important property valid in the context of other models based on i.i.d.
complex Gaussian matrices (Bai-Silverstein 1999 for the zero mean
correlated case, Haagerup 2005, Male 2012).
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Fluctuations of the extreme eigenvalues.

A Central Limit Theorem holds for the largest eigenvalue λ̂1,N . When

correctly centered and rescaled, λ̂1,N converges to a Tracy-Widom
distribution:

N2/3

σ2
×

λ̂1,N − σ2(1 +
√
cN)2

(1 +
√
cN)

(
1√
cN

+ 1
)1/3

L−−−−−→
N,M→∞

µTW .

The function µTW stands for Tracy-Widom distribution.

A similar result holds for λ̂M,N , the smallest eigenvalue.
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The model.

We recall that:

Rcv signal Channel Src signal Noisey1 · · · yN

 =

aN,1 · · · aN,K

  s1

· · ·
sK

 +

v1 · · · vN


YN = AN SN + VN

M × N M × K K × N M × N

Asymptotic regime: N →∞, cN = M/N → c∗, and K is fixed.

YN = Matrix with Gaussian iid elements + fixed rank perturbation.

Results to be used when number of sources K is � M.
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Normalizations of the signal contributions.

For each k = 1, . . . ,K .

supN
1
N

∑N
n=1 |sk,n|2 < +∞

supN ‖aN,k‖2 < +∞

If the components of aN,k are of the same order of magnitude O( 1√
M

):

SNR per sensor is O( 1
M )→ 0

SNR at the output of each matched filter a∗N,kyn is O(1)
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Notations

Spectral factorizations:

ANSNS∗NA∗N
N

=

u1,N · · · uK ,N


λ1,N

. . .

λK ,N


u1,N · · · uK ,N

∗

where λ1,N ≥ · · · ≥ λK ,N .

YNY∗N
N

=

û1,N · · · ûM,N


λ̂1,N

. . .

λ̂M,N


û1,N · · · ûM,N

∗

where λ̂1,N ≥ · · · ≥ λ̂M,N .
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Impact of the signal component on the eigenvalues and

eigenvectors of
YNY∗N
N

If M is fixed and N → +∞, cN ' 0
YNY∗

N
N ' AN

SNS∗
N

N A∗N + σ2I

λ̂k,N ' λk,N + σ2 and ûk,N ' uk,N if 1 ≤ k ≤ K

λ̂k,N ' σ2 if k > K

In our asymptotic regime:

The asymptotic distribution of M −K smallest eigenvalues of
YNY∗

N
N is

the Marc̆enko Pastur

Depending on the ratios (
λk,N
σ2 )k=1,...,K , at most K eigenvalues of

YNY∗
N

N may escape from the support of the Marc̆enko Pastur and have
a deterministic behaviour (more complicated than λk,N + σ2)
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Illustration

Histogram of the eigenvalues of
YNY∗

N
N

, cN = M
N

= 1/3, N = 192, K = 2, λ1 = 6.25, λ2 = 4,

σ2 = 1
.
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Main result on the eigenvalues

Theorem 1: Benaych-Georges and Nadakuditi, 2011

Assume that λk,N → ρk for k = 1, . . . ,K .

Let i ≤ K be the maximum index for which ρi > σ2√c∗
(λk,N > σ2√cN for k ≤ i and N large enough). Then for k = 1, . . . , i ,

λ̂k,N −
(
σ2cN + λk,N

) (
λk,N + σ2

)
λk,N

a.s.−−−−→
N→∞

0

γk,N =

(
σ2cN + λk,N

) (
λk,N + σ2

)
λk,N

> σ2(1 +
√
cN)2

and
λ̂i+1,N − σ2(1 +

√
cN)2 a.s.−−−−→

N→∞
0
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Comments on Theorem I.

The almost sure location of the eigenvalues of
VNV∗

N

N
around the

support of the MP distribution plays a fundamental role.

If cN ' 0:
YNY∗

N

N
' AN

SNS∗
N

N
A∗N + σ2I and λ̂k,N ' (λk,N + σ2).

λ→ (σ2cN+λ)(λ+σ2)
λ ' (λ+ σ2)

It is possible to estimate consistently the (λk,N)k=1,...,i from the

(λ̂k,N)k=1,...,i

For k = 1, . . . , i , it holds that

λk,N − gN(λ̂k,N)→ 0

where gN is the inverse of function λ→ (σ2cN+λ)(λ+σ2)
λ
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Main result on the eigenvectors

Theorem 2: Benaych-Georges and Nadakuditi, 2011

Assume the setting of Theorem 1. Assume in addition that
ρ1 > ρ2 > · · · > ρi (> σ2√c∗).

Then for k ≤ i , for any sequences b1,N ,b2,N of deterministic M × 1
vectors such that supN ‖bj ,N‖ <∞, j = 1, 2,

b∗1,N
(
ûk,N û∗k,N − h(γk,N)uk,Nu∗k,N

)
b2,N

a.s.−−−−→
N→∞

0

where h(x) is a known function depending on σ2 and cN , verifying
0 < h(γk,N) < 1.
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Comments on Theorem II.

It is possible to estimate consistently b∗N

(∑i
k=1 uk,Nu∗k,N

)
bN

|b∗Nuk,N |2 − 1
h(γk,N) |b

∗
N ûk,N |2 → 0

As λ̂k,N − γk,N → 0, we have

b∗N

(∑i
k=1 uk,Nu∗k,N

)
bN − b∗N

(∑i
k=1

1
h(λ̂k,N )

ûk,N û∗k,N

)
b∗N → 0

If ρK > σ2√c∗, or equivalently if i = K , it is possible to estimate
consistently quadratic forms of the projection matrix on the ”signal
subspace”

ρK > σ2√c∗ refered to as the ”Signal Subspace Separation Condition”.

Nearly equivalent to λK ,N > σ2√cN if N is large enough.

Ph. Loubaton (LIGM) Large random matrices Summer School, 7 June 2016 26 / 88



Comments on Theorem II.

Theorem II implies that if k 6= l ≤ i , then u∗l ,N ûk,N → 0

Consider b1,N = b2,N = ul ,N

Theorem II does not imply that if k ≤ i , ûk,N is a good estimate of
uk,N .

b1,N = b2,N = uk,N yields to u∗k,N ûk,N −
√
h(γk,N)→ 0 (up to a

modulus 1 coefficient)

0 < h(γk,N) < 1 can be written as

h(γk,N) =
1−

(
σ2√cN/λk,N

)2

1 + σ2cN/λk,N

If cN ' 0, h(γk,N) ' 1 and u∗k,N ûk,N ' 1

If λk,N is close from σ2√cN , u∗k,N ûk,N ' 0
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Comments on Theorem II.

Assume ρK > σ2√c∗, nearly equivalent to λK ,N > σ2√cN .

ÛN = (Û1,N , Û2,N), with Û1,N M × K eigenvectors associated to the

K greatest eigenvalues of
YNY∗

N
N .

Then, it holds that

U∗NÛ1,N ' Diag

(√
h(γ1,N), . . . ,

√
h(γK ,N)

)
up to a diagonal K × K matrix with unit norm entries
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Some insights on the proof: eigenvalues I

λ > σ2(1 +
√
c∗)

2 eigenvalue of
YNY∗

N
N iff det

(
YNY∗

N
N − λ I

)
= 0

SVD of the signal matrix: ANSN√
N

= UNΛ1/2
N Ũ∗N

YNY∗N
N

− λI =
VNV∗N
N

− λ I

+ (UN ,
VN√
N

ŨNΛ
1/2
N )

(
ΛN IK
IK 0

)(
U∗N

Λ
1/2
N Ũ∗N

V∗
N√
N

)

As λ > σ2(1 +
√
c∗)

2, QN(λ) =
(

VNV∗
N

N − λ IM
)−1

and

Q̃N(λ) =
(

V∗
NVN

N − λ IN
)−1

are well defined.
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Some insights on the proof: eigenvalues II

det
(

YNY∗
N

N
− λ IM

)
= 0 iff

det

(
IM + QN(λ)(UN ,

VN√
N

ŨNΛ
1/2
N )

(
ΛN IK
IK 0

)(
U∗N

Λ
1/2
N Ũ∗N

V∗
N√
N

))
= 0

(1)

or equivalently, iff

det

[
I2K +

(
U∗N

Λ
1/2
N Ũ∗N

V∗
N√
N

)
QN(λ)(UN ,

VN√
N

ŨNΛ
1/2
N )

(
ΛN IK
IK 0

)]
= 0
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Some insights on the proof: eigenvalues III

tN(z) Stieltjes trans. of MP(σ2, cN), t̃N(z) = cNtN(z)− (1− cN)/z

Use results concerning the behaviour of bilinear forms of QN(λ) and
Q̃N(λ)

U∗NQN(λ)UN ' tN(λ) IK

Ũ∗N
V∗
N√
N

QN(λ)UN ' 0

Ũ∗N
V∗
N√
N

QN(λ) VN√
N

ŨN = Ũ∗N(IN + zQ̃N(z))ŨN ' (1 + λt̃N(λ)) IK

Limit form of equation det
(

YNY∗
N

N
− λ I

)
= 0

det [ΛN − wN(λ) IK ] ' 0, wN(λ) = (λtN(λ)t̃N(λ))−1

Conclusion follows from the observation that λ→ wN(λ) increases from
σ2√cN to +∞ when λ increases from σ2(1 +

√
cN)2 to +∞
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Some insights on the proof: eigenvectors

Π̂k,N = ûk,N û∗k,N =
1

2iπ

∫
Ck

(
YNY∗N
N

− zI

)−1

dz

where Ck is a contour enclosing only γk,N and thus eigenvalue λ̂k,N

Express (
YNY∗

N
N − zI)−1 en terms of QN(z) = (

VNV∗
N

N − zI)−1, Q̃N(z),
VN√
N

, and of UN , ŨN ,ΛN

Use the asymptotic behaviour of the bilinear forms of QN(z) and
Q̃N(z)

Prove that bilinear forms of (
YNY∗

N
N − zI)−1 have the same behaviour

than the bilinear forms of matrix

TN(z) =
(
−z(1 + σ2t̃N(z)) +

AN (SNS∗
N/N) A∗

N
1+σ2cN tN(z)

)−1

Evaluate the integral using the residue theorem

Conclude
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Testing K = 0 versus K = 1.

Nadakuditi-Edelmann (IEEE-SP 2008), Nadler (IEEE-SP 2010),
Bianchi-Debbah-Maeda-Najim (IEEE-IT 2011) when (sn)n=1,...,N is an
i.i.d. complex Gaussian sequence.

Hypothesis test:

{
H0 : YN = VN (Noise)
H1 : YN = aN sN + VN (Info+Noise)

λ1,N = λmax ((aNsNs∗Na∗N)/N) = ‖aN‖2 1
N

∑N
n=1 |sn|2 → ρ

λ1,N

σ2 matched filter SNR output
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Testing K = 0 versus K = 1.

Generalized Likelihood Ratio Test (GLRT)

TN =
λ̂1,N

1
M tr

(
YNY∗

N
N

)

Analysis of TN under each hypothesis.

Asymptotic analysis of TN provides interesting insights.

Under either H0 or H1

1

M
tr

(
YNY∗N
N

)
a.s.−−−−→

N→∞
σ2.
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Testing K = 0 versus K = 1.

Under H0, TN ' (1 +
√
cN)2

Under H1

If ρ > σ2√c∗ (
λ1,N

σ2 >
√
cN), then

TN '
(
σ2cN + λ1,N

) (
λ1,N + σ2

)
σ2 λN

> (1 +
√
cN)2

If ρ < σ2√c∗ (
λ1,N

σ2 <
√
cN), then

TN ' (1 +
√
cN)2.
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Testing K = 0 versus K = 1

Remarks

ρ > σ2√c∗ provides the limit of detectability by the GLRT.

False Alarm Probability can be evaluated with the help of the
Tracy-Widom law.

If sequence (sn)n=1,...,N is known (training sequence), no limit of
detectability
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Testing K = 0 versus K = K0.

Generalized Likelihood Ratio Test (GLRT)

TN =

∑K0
k=1 λ̂k,N

1
M tr

(
YNY∗

N
N

)

Under either H0 or H1

1

M
tr

(
YNY∗N
N

)
a.s.−−−−→

N→∞
σ2.
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Testing K = 0 versus K = K0.

Under H0, TN ' K0 (1 +
√
cN)2

Under H1

If ρ1 ≤ σ2√c∗ then

TN ' K0 (1 +
√
cN)2.

If ρk > σ2√c∗ k = 1, . . . , i and ρi+1 ≤ σ2√c∗ then

TN '
∑i

k=1 γk,N + (K0 − i)σ2(1 +
√
cN)2

σ2
> K0 (1 +

√
cN)2
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Dimension reduction via principal component analysis I.

Project the M-dimensional observations yn on the eigenspace

associated to the K largest eigenvalues of
YNY∗

N

N

ÛN = (Û1,N , Û2,N), with Û1,N M × K and Û2,N M × (M − K )
matrices

zn = Û∗1,Nyn is the K–dimensional reduced size observation

Assume for simplicity that
SNS∗

N
N ' IK , so that AN = UNΛ

1/2
N Θ∗N

Analysis of the possible SNR loss: cN ' 0

cN ' 0 implies that Û1,N ' UN and Û∗1,NUN ' IK

zn ' Λ
1/2
N Θ∗Nsn + wn

wn = Û∗1,Nvn has covariance matrix σ2IK

No SNR loss if cN ' 0
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Dimension reduction via principal component analysis II.

Assume ρK > σ2√c∗ (nearly equivalent to λK ,N > σ2√cN).

λ̂k,N ' γk,N =
(σ2cN+λk,N)(λk,N+σ2)

λk,N
for k = 1, . . . ,K .

Analysis of the possible SNR loss: cN → c∗

Û∗1,NUN ' Diag(
√
h(γ1,N), . . . ,

√
h(γK ,N))

h(γk,N) =
1−(σ2√cN/λk,N)

2

1+σ2cN/λk,N
< 1

zn = Diag
(√

λ1,N

√
h(γ1,N), . . . ,

√
λK ,N

√
h(γK ,N)

)
Θ∗Nsn + wn

SNR loss on each eigenvalue: the price to be paid in the context M
N non

negligible
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Source localization using the subspace method.

Mestre-Lagunas (IEEE-SP 2008) when the source signals are i.i.d.
gaussian independent sequences (use of the zero-mean correlated
model).

In the context of Information plus Noise models, see
Vallet-Loubaton-Mestre (IEEE-IT 2012),
Hachem-Loubaton-Mestre-Najim-Vallet (J. Multivariate Analysis
2013), Vallet-Mestre-Loubaton (IEEESP 2015)

Subspace estimation

ΠN =
∑K

k=1 Πk,N orthogonal projection on the column space of A,

Π⊥N the orthogonal projection on [sp(A)]⊥

Consistent estimation of b∗N Π⊥N bN , or equivalently of b∗N ΠN bN , bN

uniformly bounded deterministic vector.
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Source localization.

Problem

K radio sources send their signals to a uniform array of M antennas during
N signal snapshots.

Estimate arrival angles ϕ1, . . . , ϕK

.

ϕ2

ϕ1

.

Example with two sources
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Source localization with the subspace method (MUSIC)

Model.

YN = ANSN + VN

AN =
[
aN(ϕ1) · · · aN(ϕK )

]
with aN(ϕ) =

1√
M


1
eıϕ

...

eı(M−1)ϕ



MUSIC algorithm principle

aN(ϕ)∗Π⊥NaN(ϕ) = 0 ⇔ ϕ ∈ {ϕ1, . . . , ϕK}
Estimate aN(ϕ)∗Π⊥NaN(ϕ) for each ϕ, and evaluate the arguments of
the local minima of the estimate w.r.t. ϕ.

Traditional estimate : aN(ϕ)∗
(∑M

k=K+1 ûk,N û∗k,N

)
aN(ϕ).
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Improved estimation of the cost function I

Subspace separation condition

The source number K is fixed and for all k ∈ {1, . . . ,K}, λk,N → ρk ,
where ρ1 > . . . > ρK > σ2√c∗.

Traditional estimate aN(ϕ)∗
(

I−
∑K

k=1 ûk,N û∗k,N

)
aN(ϕ) converges

to:

aN(ϕ)∗

(
I−

K∑
k=1

h(γk,N)uk,Nu∗k,N

)
aN(ϕ)

where h(γk,N) =
λ2
k,N−σ

4cN
λk,N(λk,N+σ2cN)

(recall that γk,N =
(λk,N+σ2)(λk,N+σ2c)

λk,N
).
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Improved estimation of the cost function I

Subspace separation condition

The source number K is fixed and for all k ∈ {1, . . . ,K}, λk,N → ρk ,
where ρ1 > . . . > ρK > σ2√c∗.

Traditional estimate aN(ϕ)∗
(

I−
∑K

k=1 ûk,N û∗k,N

)
aN(ϕ) converges

to:

aN(ϕ)∗Π⊥NaN(ϕ)︸ ︷︷ ︸
MUSIC cost function

+ aN(ϕ)∗

(
K∑

k=1

[1− h(γk,N)] uk,Nu∗k,N

)
aN(ϕ)︸ ︷︷ ︸

Bias

where h(γk,N) =
λ2
k,N−σ

4cN
λk,N(λk,N+σ2cN)

(recall that γk,N =
(λk,N+σ2)(λk,N+σ2c)

λk,N
).

Improvement

Need to apply some correction (Theorem II) to recover consistency.
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Improved estimation of the cost function II

Consistent estimate of aN(ϕ)∗Π⊥aN(ϕ)

aN(ϕ)∗

(
I−

K∑
k=1

ûk,N û∗k,N

h(λ̂k,N)

)
aN(ϕ)

Stronger result - Uniform convergence

sup
ϕ∈(−π,π]

∣∣∣∣∣aN(ϕ)∗Π⊥NaN(ϕ)−

(
1−

K∑
k=1

|aN(ϕ)∗ûk,N |2

h(λ̂k,N)

)∣∣∣∣∣ a.s.−−−−→
N→∞

0

Remark. Uniform consistency of the cost function estimator over ϕ is
required to study the asymptotic behaviour of the DoA estimates.
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Asymptotic behaviour of the improved DoA estimates

Widely spaced DoA scenario

Widely spaced DoA. ϕ1, . . . , ϕK are fixed w.r.t. N. Implies that
uk,N ' aN(φk) for k = 1, . . . ,K .

Uncorrelated sources.
SNS∗

N
N converge to diag(ρ1, . . . , ρK ).

SNR condition. ρK > σ2√c∗

⇒ The subspace separation is satisfied.

M-Consistency - Widely spaced DoA

For all k ∈ {1, . . . ,K},

M (ϕ̂k,N − ϕk)
a.s.−−−−→

N→∞
0
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Asymptotic normality - Widely spaced DoA

For all k ∈ {1, . . . ,K},

M3/2 (ϕ̂k,N − ϕk)
D−−−−→

N→∞
N
(

0,
6σ2(ρk + σ2)

ρ2
k − σ4c∗

)

Comments

Both results proved in Hachem et. al ’12

If a source power is close to σ2√c∗, the corresponding MSE
increases.

Results can be extended to the case of correlated sources.
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Sketch of proof

Improved estimate. η̂N(ϕ) = 1−
∑K

k=1
|aN(ϕ)∗ûk,N |2

h(λ̂k,N)
.

Taylor expansion. As M(ϕ̂k − ϕk)→ 0 a.s., we have

M3/2 (ϕ̂k,N − ϕk) = −
1√
M
η̂′N(ϕk)

1
M2 η̂

(2)
N (ϕk)

+ oP(1).

1st order.

1

M2
η̂

(2)
N = 2

a′N(ϕk)∗

M
Π⊥N

a′N(ϕk)∗

M
+ oP(1).

2nd order. Need to derive CLT on the bilinear form

1√
M
η̂′N(ϕk) = 2

√
MRe

[
a′N(ϕk)∗

M

(
I−

K∑
k=1

ûk,N û∗k,N

h(λ̂k,N)

)
aN(ϕk)

]
.

Ph. Loubaton (LIGM) Large random matrices Summer School, 7 June 2016 48 / 88



CLT for bilinear forms.

Theorem

Let (b1,N), (b2,N) two deterministic sequences of unit norm vectors. If

cN = c∗ + o(N−1/2),

lim infN ‖ΠNb1,N‖ > 0,

there exists a deterministic bounded sequence (ξN) s.t. lim infN ξN > 0 and√
N

ξN
Re

(
b∗1,N

(
I−

K∑
k=1

ûk,N û∗k,N

h(λ̂k,N)

)
b2,N − b∗1,NΠ⊥Nb2,N

)
D−−−−→

N→∞
N (0, 1).

Remark

The rate O
(

1√
N

)
does not hold anymore if b1,N ,b2,N belong to the noise

subspace.
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Sketch of proof

Integral representation. If C is a contour enclosing γ1,N , . . . , γK ,N
(and thus (λ̂k,N)k=1,...,K ) and not 0,

K∑
k=1

b∗1,N ûk,N û∗k,Nb2,N

h(λ̂k,N)
=

1

2πi

∫
C

b∗1,N

(
YNY∗

N
N − zI

)−1
b2,N

h(z)
dz

CLT for quadratic forms The random process

z 7→ b∗1,N

(
YNY∗N
N

− zI

)−1

b2,N

defined on the compact C converges in distribution to a continuous

Gaussian process, with fluctuations of the order O
(√

1
N

)
.

Transfer to the integral. Integral of a continuous Gaussian process
= Gaussian R.V.
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Behaviour of standard MUSIC

Cost function. Uniformly on ϕ,

aN(ϕ)∗ Π̂⊥N aN(ϕ) ≈ 1−
K∑

k=1

h(γk,N) |aN(ϕ)∗a(ϕk)|2

Minimizers. The asymptotic cost function admits ϕ1, . . . , ϕK as
unique minimizers.

DoA estimates. We can prove that traditional MUSIC DoA
estimates satisfy exactly the same 1st and 2nd order results that the
improved estimates.

Remarks

⇒ No improvement in this scenario!

The basic smoothed periodogram also lead to consistent
estimators with same rate of convergence, but subspace
separation condition not needed.
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Closely spaced DoA scenario

K = 2 sources

Closely spaced DoA. ϕ2,N = ϕ1,N + α
M

Uncorrelated sources
SNS∗

N
N → I2, which implies that

λ1,N → ρ1 = 1 + |sinc(α/2)| and λ2,N → ρ2 = 1− |sinc(α/2)|

Subspace separation condition. 1− |sinc(α/2)| > σ2√c∗.

M-Consistency - Closely spaced DoA

For all k ∈ {1, 2},

M (ϕ̂k,N − ϕk,N)
a.s.−−−−→

N→∞
0
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Asymptotic normality - Closely spaced DoA

For all k ∈ {1, 2}

M3/2√
ξ̃k,N

(ϕ̂k,N − ϕk,N)
D−−−−→

N→∞
N (0, 1).

where (ξk,N) is a bounded deterministic sequence s.t. lim infN ξk,N > 0.

Comments

The improved MUSIC method is still able to asymptotically
separate closely spaced DoA.

Smoothed periodogram and standard MUSIC are not
M-consistent anymore.
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K = 2, M = 40,N = 80, ϕ2 − ϕ1 = 5× 2π
M , uncorrelated

sources.

SNR
-4 -2 0 2 4 6 8 10

M
S

E

10 -6

10 -5

10 -4

10 -3

10 -2
MSE on the first DoA estimate

Empirical MSE (G-MUSIC)
Empirical MSE (MUSIC)
Empirical MSE (Spatial Periodogram)
Theoretical MSE (G-MUSIC)
CRB
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K = 2, M = 40,N = 80, ϕ2 − ϕ1 = 5× 2π
M , correlated

sources.

SNR
0 2 4 6 8 10 12 14

M
S

E

10 -6

10 -5

10 -4

10 -3
MSE on the first DoA estimate

Empirical MSE (G-MUSIC)
Empirical MSE (MUSIC)
Empirical MSE (Spatial Periodogram)
Theoretical MSE (G-MUSIC)
CRB

Ph. Loubaton (LIGM) Large random matrices Summer School, 7 June 2016 55 / 88



K = 2, M = 40,N = 80, ϕ2 − ϕ1 = 1
4 ×

2π
M , uncorrelated

sources.

SNR
16 18 20 22 24 26 28 30 32 34

M
S

E

10 -7

10 -6

10 -5

10 -4

10 -3
MSE on the first DoA estimate

Empirical MSE (G-MUSIC)
Empirical MSE (MUSIC)
Empirical MSE (Spatial Periodogram)
Theoretical MSE (G-MUSIC)
CRB
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K = 2, M = 40,N = 20, ϕ2 − ϕ1 = 1
4 ×

2π
M , uncorrelated

sources.

SNR
24 26 28 30 32 34 36 38 40

M
S

E

10 -7

10 -6

10 -5

10 -4

10 -3
MSE on the first DoA estimate

Empirical MSE (G-MUSIC)
Empirical MSE (MUSIC)
Empirical MSE (Spatial Periodogram)
Theoretical MSE (G-MUSIC)
CRB
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Other frequently used methods

Beamspace MUSIC

Idea. Prefiltering the data to focus the array onto an angular sector
Θ where the DoA are located.

DFT Beamformer. Form L orthonormal beams a(ψ1,N), . . . , a(ψL,N)
with

{ψ1,N , . . . , ψL,N} =

{
−π +

2π(m − 1)

M
: m = 1, . . . ,M

}
∩Θ.
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Filtered signal

ỸN = B∗NYN

= ÃNSN + ṼN ,

where

BN = [a(ψ1,N), . . . , a(ψL,N)]

ÃN = [ãN(ϕ1), . . . , ãN(ϕK )], with ãN(ϕk) = B∗NaN(ϕk).

ṼN = B∗NVN has i.i.d CN (0, σ2) entries.

Beamspace MUSIC algorithm

Estimate the DoA as the K deepest minima of

ϕ 7→ ãN(ϕ)∗Π̃⊥N ãN(ϕ),

where Π̃⊥N is the noise projector estimate based on ỸN .
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Dimensionality reduction - L scales with N

If Θ is fixed w.r.t. N,

L

N
→ d∗ =

|Θ|
2π

c∗ ≤ c∗.

⇒ The separation condition is less restrictive.

Dimensionality reduction - L fixed w.r.t N

If L is fixed w.r.t. N (thus |Θ| = O
(

1
M

)
)

⇒ The separation condition disappears and we can recover
M-consistency in a closely spaced DoA scenario.
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M = 40, N = 80, ϕ2 − ϕ1 = 1
4 ×

2π
M , uncorrelated sources

SNR
16 18 20 22 24 26 28 30 32 34

M
S

E

10 -7

10 -6

10 -5

10 -4

10 -3
MSE on the first DoA estimate

Empirical MSE (G-MUSIC)
Empirical MSE (Beamspace-MUSIC)
CRB

Focusing sector: Θ = [ϕ1 − 5π
M , ϕ2 + 5π

M ]
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M = 40, N = 80, ϕ2 − ϕ1 = 1
4 ×

2π
M , correlated sources

SNR
16 18 20 22 24 26 28 30 32 34

M
S

E

10 -7

10 -6

10 -5

10 -4

10 -3
MSE on the first DoA estimate

Empirical MSE (G-MUSIC)
Empirical MSE (Beamspace MUSIC)
CRB

Focusing sector: Θ = [ϕ1 − 5π
M , ϕ2 + 5π

M ]
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1 Problem statement

2 The narrow band array processing model
Detailed presentation of the narrow band array processing model.
The pure noise case: the Marcenko-Pastur distribution
The signal plus noise case.
Applications.

3 Wideband array processing models.
Detailed description of the wideband array processing model
Asymptotic behaviour of the empirical spatio-temporal covariance
matrix.
Applications.

4 Conclusion
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The observed signal.

Observation: M-dimensional time series yn observed from n = 1 to
n = N .

yn =
∑P−1

p=0 hpsn−p + vn = [h(z)]sn + vn

(sn)n∈Z scalar deterministic sequence

h(z) =
∑P−1

p=0 hpz
−p unknown SIMO transfer function

(vn)n∈Z temporally and spatially white complex Gaussian noise with
variance σ2.

Associated narrowband model with P sources.

yn = Asn + vn

A = (hP−1, . . . ,h0)

sn = (sn−(P−1), sn−(P−1)+1, . . . , sn)T

Does not take into account the structure of sn.
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The extended observed signal

(yk,n)n∈Z scalar signal received on sensor k .

For L well chosen, define for each n L-dimensional vector y(L)
k,n by:

y
(L)
k,n = (yk,n, yk,n+1, . . . , yk,n+L−1)T and ML–dimensional vector y

(L)
n by:

y
(L)
n =


y

(L)
1,n
...

y
(L)
M,n


Define ML× N matrix Y(L)

N by:

Y(L) =
(

y
(L)
1 , . . . , y

(L)
N

)
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Y(L) is a block-Hankel matrix.

For each k , define L× N Hankel matrix Y(L)
k,N by

Y
(L)
k,N =


yk,1 yk,2 . . . yk,N
yk,2 yk,3 . . . yk,N+1

yk,3 . . . . . . yk,N+2
...

...
...

...
yk,L yk,L+1 . . . yk,N+L−1


Y(L)

N is given by:

Y
(L)
N =


Y

(L)
1,N
...

Y
(L)
M,N
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Expression of Y
(L)
N .

For each k :

Y
(L)
k,N = H

(L)
k S

(L)
N + V

(L)
k,N

where H
(L)
k is a L× (P + L− 1) Toeplitz matrix and S

(L)
N is a

(P + L− 1)× N Hankel matrix

Y
(L)
N =

 H
(L)
1
...

H
(L)
M

 S
(L)
N + V

(L)
N = H(L) S

(L)
N + V

(L)
N

Y
(L)
N can be interpreted as a low rank block-Hankel Information plus

Noise random matrix model

What can be said on eigenvalues / eigenvectors of the empirical

spatio-temporal covariance matrix
Y

(L)
N Y

(L)∗
N

N ?
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Asymptotic behaviour of the eigenvalues of
V

(L)
N V

(L)∗
N

N .

Asymptotic regime

M → +∞, N → +∞, dN = ML
N → d∗

L may converge towards +∞ but in such a way that L
N → 0

Theorem (PL, J. of Theo. Prob. in press)

The empirical eigenvalue distribution of
V

(L)
N V

(L)∗
N

N has almost surely the
same asymptotic behaviour than MP(σ2, dN)

If moreover L = O(Nα) with α < 2/3, nearly equivalent to L
M2 → 0,

then:

I all the non zero eigenvalues of
V

(L)
N V

(L)∗
N

N lie in a neighbourhood of

[σ2(1−
√
d∗)

2, σ2(1 +
√
d∗)

2].
I Moreover, if λ ∈ C− [σ2(1−

√
d∗)

2, σ2(1 +
√
d∗)

2], the bilinear forms

of matrices QN(λ) = (
V

(L)
N V

(L)∗
N

N − λ)−1 and Q̃N(λ) behave as if the

entries of V
(L)
N were i.i.d.
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Asymptotic behaviour of the largest eigenvalues and

associated eigenvectors of
Y

(L)
N Y

(L)∗
N

N

Asymptotic regime

M → +∞, N → +∞, dN = ML
N → d∗

L and P do not scale with M and N

The rank of signal matrix H(L)
N S(L)

N does not scale with M and N

All the results presented above in the context of the standard low
rank Information plus Noise models are still valid, but cN = M

N and K

have to be replaced by dN = ML
N and P + L− 1
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Application to the detection of signal [h(z)]sn from the
observations (yn)n=1,...,N .

Test based on the largest eigenvalues (λ̂
(L)
k,N) of

Y
(L)
N Y

(L)∗
N

N
.

T
(L)
N =

∑Q+L−1
k=1 λ̂

(L)
k,N

Tr(Y
(L)
N Y

(L)∗
N )/N

Possible to evaluate the first order behaviour of T
(L)
N and to get

insights on the effects of the choice of Q and L

See G.T. Pham, PL, Eusipco 2015 for more details

Consistency of the test if the largest eigenvalue λ
(L)
1,N of

H
(L)
N

S
(L)
N S

(L)
N

N H
(L)∗
N is greater than σ2

√
ML/N.

If L increases, the detectability threshold increases, but λ
(L)
1,N increases

as well until saturation.

The optimal choice depends on the properties of h(z).
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Application to the detection of signal [h(z)]sn from the
observations (yn)n=1,...,N .

Example: Vectors (hp)p=0,...,P−1 are realizations of zero mean

uncorrelated random vectors and S(L)
N S(L)∗

N /N ' IP+L−1.

Consistency of the test if the largest eigenvalue λ
(L)
1,N of

H
(L)
N

S
(L)
N S

(L)
N

N H
(L)∗
N is greater than σ2

√
ML/N.

If L increases, the detectability threshold increases, but λ
(L)
1,N increases

as well until saturation.

As M is large h∗phq ' µp δp−q, µp = E(‖hp‖2)

If L = 1, λ
(L)
1,N ' maxP−1

p=0 µp

If L ≥ P, λ
(L)
1,N '

∑P−1
p=0 µp

If µp = µ for each p,

I for L ≤ P, the consistency condition is µ ≥ σ2
√
L

√
M/N

I for L ≥ P, it is µ ≥ σ2 (
√
L/P)

√
M/N
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Application to the loading factor estimation of trained
spatio-temporal Wiener filters.

Observation: M-dimensional time series yn observed from n = 1 to
n = N .

yn =
∑P−1

p=0 hpsn−p + vn = [h(z)]sn + vn

(sn)n∈Z scalar deterministic sequence

h(z) =
∑P−1

p=0 hpz
−p unknown SIMO transfer function

(vn)n∈Z temporally and spatially white complex Gaussian noise with
variance σ2.

Context.

Training sequence (sn)n=1,...,N available at the receiver side,
(yn)n=1,...,N the corresponding received signal.

Estimate ML–dimensional vector g(L) for which E|sn − g(L)∗y
(L)
n |2 is

minimum
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Application to the loading factor estimation of trained
spatio-temporal Wiener filters.

Context.

Training sequence (sn)n=1,...,N available at the receiver side,
(yn)n=1,...,N the corresponding received signal.

Estimate ML–dimensional vector g(L) for which E|sn − g(L)∗y
(L)
n |2 is

minimum

Regularized least-squares estimate:

ĝ
(L)
λ =

(
Y

(L)
N Y

(L)∗
N

N + λI

)−1 (
1
N

∑N
n=1 y

(L)
n s∗n

)
Regularization necessary if ML > N and known to improve
performance when ML/N is not small enough

How to choose λ when M and N are large and of the same order of
magnitude ?
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Application to the loading factor estimation of trained
spatio-temporal Wiener filters.

Context.

Regularized least-squares estimate:

ĝ
(L)
λ =

(
Y

(L)
N Y

(L)∗
N

N + λI

)−1 (
1
N

∑N
n=1 y

(L)
n s∗n

)
How to choose λ when M and N are large and of the same order of
magnitude ?

Questions inspired by Mestre-Lagunas IEEE SP 2006, devoted to the
case h(z) = h0 a priori known (no training sequence), temporally
white but spatially correlated noise + interference with unknown
covariance matrix, L = 1.
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Maximization of the SINR provided by filter ĝ
(L)
λ .

Assume
S

(L)
N S

(L)∗
N

N = IP+L−1

The SINR provided by ĝ
(L)
λ is easily seen to be

SINR(ĝ
(L)
λ ) =

|ĝ(L)∗
λ h

(L)
P |

2

ĝ
(L)∗
λ H

(L)
− H

(L)∗
− ĝ

(L)
λ + σ2‖ĝ(L)

λ ‖2

h
(L)
P column P of matrix H(L), H

(L)
− matrix obtained from H(L) by deleting

column P.

SINR(ĝ(L)
λ ) is a random variable because ĝ(L)

λ depends on the noise
corrupting the signal (yn)n=1,,...,N received during the transmission of
the training sequence.
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Main results

SINR(ĝ
(L)
λ ) =

|ĝ(L)∗
λ h

(L)
P |

2

ĝ
(L)∗
λ H

(L)
− H

(L)∗
− ĝ

(L)
λ + σ2‖ĝ(L)

λ ‖2

Main results: When M and N converge towards +∞ at the same
rate, and that P and L are fixed

SINR(ĝ
(L)
λ ) converges a.s. towards a deterministic term φL(λ)

depending on λ and on σ2,H(L).

While H(L) is unknown at the receiver side, it is possible to estimate
consistently φL(λ) for each λ ≥ 0 from (yn)n=1,...,N .

λ is estimated as the argmax of the consistent estimate of λ→ φL(λ).
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Some insights on the deterministic behaviour of the SINR.

SINR(ĝ
(L)
λ ) =

|ĝ(L)∗
λ h

(L)
P |

2

ĝ
(L)∗
λ H

(L)
− H

(L)∗
− ĝ

(L)
λ + σ2‖ĝ(L)

λ ‖2

Convergence of SINR(ĝ(L)
λ ) towards a deterministic term φL(λ).

Evaluate the behaviour of

u∗ ĝ
(L)
λ for each deterministic ML–dimensional vector u.

‖ĝ(L)
λ ‖

2
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Expression of ĝ(L)
λ .

ĝ
(L)
λ =

(
Y

(L)
N Y

(L)∗
N

N
+ λI

)−1(
1

N

N∑
n=1

y
(L)
n s∗n

)

Matrix

(
Y

(L)
N Y

(L)∗
N

N + λI

)−1

coincides with the resolvent of matrix
Y

(L)
N Y

(L)∗
N

N

at point −λ.

If aN =
(

1√
N

(s1, s2, . . . , sN)
)∗

ĝ
(L)
λ =

(
Y

(L)
N Y

(L)∗
N

N
+ λI

)−1
Y

(L)
N√
N

aN
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ĝ
(L)
λ =

(
Y

(L)
N Y

(L)∗
N

N
+ λI

)−1
Y

(L)
N√
N

aN

Possible to show that bilinear forms of

(
Y

(L)
N Y

(L)∗
N

N + λI

)−1

have the

same behaviour than if noise matrix V
(L)
N were i.i.d.

Not sufficient: presence of
Y

(L)
N√
N

aN and evaluation the behaviour of

‖ĝ(L)
λ ‖.

See G.T. Pham, PL, SSP 2016 for more details.
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Discussion

Assume dN = ML/N < 1 and λ = 0. Denote by γ the SINR provided
by the true Wiener filter:

γ =
h

(L)∗
P

(
H(L)H(L)∗ + σ2I

)−1
h

(L)
P

1− h
(L)∗
P

(
H(L)H(L)∗ + σ2I

)−1
h

(L)
P

Then, the limit SINR φL(0) provided by ĝ
(L)∗
0 is given by

φL(0) = γ
(1− dN)γ

γ + dN

SINR loss equal to (1− dN) γ
γ+dN
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Illustration

M = 40, N = 200, P = 5, (hp)p=0,...,4 random directional vectors

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Lambda

S
IN

R

SNR= 8

 

 

L=1

L=2

L=3

L=4

L=5

L=6

L=7

L=8

Asymptotic SINR vs λ for various values of L.
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Illustration

M = 40, N = 200, P = 5, L = 5, (hp)p=0,...,4 random directional vectors

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

lambda

1
0

S
IN

R

Confidence interval with SNR=8 and L=5

 

 

lower bound

upper bound

SINR

Comparison between φ5(λ) and 95 per cent confidence intervals on

SINR(ĝ
(5)
λ )
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Application to the analysis of subspace DoA estimation
using spatial smooting schemes I.
Spatial smoothing originally designed for DoA estimation of fully
correlated signals.
Also allows to use subspace method when N << M.

L < M : artificially create NL snapshots of dimension M − L + 1.

Y(L)
n =


y1,n y2,n . . . . . . yL,n
y2,n y3,n . . . . . . yL+1,n

...
...

...
...

...
...

...
...

...
...

yM−L+1,n yM−L+2,n . . . . . . yM,n


Define (M − L + 1)× NL matrix Y(L)

N by

Y
(L)
N =

(
Y(L)

1 , . . . ,Y(L)
N

)
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Application to the analysis of subspace DoA estimation
using spatial smooting schemes II.

Properties of Y(L)
N .

Y
(L)
N = X

(L)
N + V

(L)
N

X
(L)
N is a rank K deterministic (M − L + 1)× NL matrix

Range(X
(L)
N ) = sp{aM−L+1(ϕk), k = 1, . . . ,K}

Narrow band array processing model with M − L + 1 sensors and NL
(correlated) observations.

Quantify the performance of subspace and improved subspace method
in the high-dimensional context.

Characterization of the K largest eigenvalues / eigenvectors of

Y
(L)
N Y

(L)∗
N /NL
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The asymptotic regime.

M → +∞, N = O(Mβ), 1/3 < β ≤ 1

eN = M−L+1
NL → c∗

Implies that L = O(Mα), 0 ≤ α < 2/3, and that M
NL → e∗

Properties of the eigenvalues of V(L)
N V(L)∗

N /NL.

Eigenvalue distribution has the same asymptotic behaviour than
MP(σ2, eN)

All the eigenvalues lie in a neighbourhood of
[σ2(1−√e∗)2, σ2(1 +

√
e∗)

2]

Moreover, if λ ∈ C− [σ2(1−√e∗)2, σ2(1 +
√
e∗)

2], the bilinear forms

of matrices QN(λ) = (
V

(L)
N V

(L)∗
N

N − λI)−1 and Q̃N(λ) behave as if the

entries of V
(L)
N were i.i.d.

The results concerning high dimensional subsapce methods can be
extended.
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Subspace separation condition and largest eigenvectors of

Y
(L)
N Y

(L)∗
N /NL.

Comparison smoothed / unsmoothed when L does not converge +∞.
SNS∗

N
N → D, D diagonal

unsmoothed: λK (A∗MAMD) > σ2
√

M/N

smoothed: λK
(
A∗M−LAM−LD

)
> σ2
√
L

√
M/N = σ2

√
M
NL

Same condition as in a standard narrow band array processing model
with M − L + 1 antennas and NL (independent) snapshots.

Discussion

If L << M, λK
(
A∗M−LAM−LD

)
' λK (A∗MAMD)

Clear improvement of the subspace separation condition if L << M

If L increases too much, the diminution of the number of antennas
due to the spatial smoothing becomes dominant.
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Illustration

18 20 22 24 26 28 30 32 34
10

−7

10
−6

10
−5

10
−4

SNR

M
S

E

N = 20,M = 160, θ1 = 0, θ2 = π
2M

 

 

L=2

L=4

L=8

L=16

CRB

MMSE of the improved subspace estimate of θ1 for L = 2, 4, 8, 16 w.r.t.
SNR.
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Conclusion.

Certain classical problems have to be revisited when M and N are of
the same order of magnitude

The theoretical results that are obtained are in general reliable, even if
M
N is small

Although rather technical, the above asymptotic technics should be
widely disseminated in the community

Other related high dimensional signal processing problems.

Consistent estimation of large covariance matrices when a priori
informations are available (e.g. sparsity).

Sparse principal component analysis.

Different mathematical tools.
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