Random Matrices and Machine Learning (Summer School on "Large Random Matrices and High Dimensional Statistical Signal Processing")

Romain COUILLET

CentraleSupélec (Paris, France)

June 8, 2016

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Context and Taskforce

General theme:

Understand and improve machine learning methods in the large dimensional regime

Context and Taskforce

General theme:

Understand and improve machine learning methods in the large dimensional regime

Collaborators:

Florent BENAYCH-GEORGES (Professor) Kernel Spectral Clustering

Gilles WAINRIB (Assistant Professor) Cosme LOUART (Intern) Neural Networks

Hafiz TIOMOKO ALI (PhD student) Community detection on graphs

Xiaoyi MAI (Intern) Semi-supervised learning

Zhenyu LIAO (Intern) Support vector machines

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$:

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$: If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is the sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$:

• If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is the sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*.$$

• If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_N \xrightarrow{\text{a.s.}} C_N.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_N - C_N \right\| \xrightarrow{\text{a.s.}} 0.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$:

• If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is the sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*.$$

• If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_N \xrightarrow{\text{a.s.}} C_N.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_N - C_N \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $N, n \to \infty$ with $N/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_N - C_N \right\| \not\to 0.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$:

• If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is the sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*.$$

• If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_N \xrightarrow{\text{a.s.}} C_N.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_N - C_N \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $N, n \to \infty$ with $N/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_N - C_N \right\| \not\to 0.$$

For practical N, n with $N \simeq n$, leads to dramatically wrong conclusions

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$:

• If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is the sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*.$$

• If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_N \xrightarrow{\text{a.s.}} C_N.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_N - C_N \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

 \blacktriangleright No longer valid if $N,n \rightarrow \infty$ with $N/n \rightarrow c \in (0,\infty),$

$$\left\| \hat{C}_N - C_N \right\| \not\to 0.$$

- \blacktriangleright For practical N,n with $N\simeq n,$ leads to dramatically wrong conclusions
- Even for $n = 100 \times N$.

Setting: $x_i \in \mathbb{C}^N$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_N)$

Setting: $x_i \in \mathbb{C}^N$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_N)$

▶ assume N = N(n) such that $N/n \rightarrow c > 1$

Setting: $x_i \in \mathbb{C}^N$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_N)$

- ▶ assume N = N(n) such that $N/n \rightarrow c > 1$
- then, joint point-wise convergence

$$\max_{1 \le i,j \le N} \left| \left[\hat{C}_N - I_N \right]_{ij} \right| = \max_{1 \le i,j \le N} \left| \frac{1}{n} X_{j,\cdot} X_{i,\cdot}^* - \boldsymbol{\delta}_{ij} \right| \xrightarrow{\text{a.s.}} 0.$$

Setting: $x_i \in \mathbb{C}^N$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_N)$

- ▶ assume N = N(n) such that $N/n \rightarrow c > 1$
- then, joint point-wise convergence

$$\max_{1 \le i,j \le N} \left| \left[\hat{C}_N - I_N \right]_{ij} \right| = \max_{1 \le i,j \le N} \left| \frac{1}{n} X_{j,\cdot} X_{i,\cdot}^* - \boldsymbol{\delta}_{ij} \right| \xrightarrow{\text{a.s.}} 0.$$

however, eigenvalue mismatch

$$0 = \lambda_1(\hat{C}_N) = \dots = \lambda_{N-n}(\hat{C}_N) \le \lambda_{N-n+1}(\hat{C}_N) \le \dots \le \lambda_N(\hat{C}_N)$$

$$1 = \lambda_1(I_N) = \dots = \lambda_{N-n}(I_N) = \lambda_{N-n+1}(\hat{C}_N) = \dots = \lambda_N(I_N)$$

Setting: $x_i \in \mathbb{C}^N$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_N)$

- ▶ assume N = N(n) such that $N/n \rightarrow c > 1$
- then, joint point-wise convergence

$$\max_{1 \le i,j \le N} \left| \left[\hat{C}_N - I_N \right]_{ij} \right| = \max_{1 \le i,j \le N} \left| \frac{1}{n} X_{j,\cdot} X_{i,\cdot}^* - \boldsymbol{\delta}_{ij} \right| \xrightarrow{\text{a.s.}} 0.$$

however, eigenvalue mismatch

$$0 = \lambda_1(\hat{C}_N) = \dots = \lambda_{N-n}(\hat{C}_N) \le \lambda_{N-n+1}(\hat{C}_N) \le \dots \le \lambda_N(\hat{C}_N)$$

$$1 = \lambda_1(I_N) = \dots = \lambda_{N-n}(I_N) = \lambda_{N-n+1}(\hat{C}_N) = \dots = \lambda_N(I_N)$$

 \Rightarrow no convergence in spectral norm.

Figure: Histogram of the eigenvalues of \hat{C}_N for N = 500, n = 2000, $C_N = I_N$.

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_N of Hermitian matrix $A_N \in \mathbb{C}^{N \times N}$ is

$$\mu_N = \frac{1}{N} \sum_{i=1}^N \boldsymbol{\delta}_{\lambda_i(A_N)}.$$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_N of Hermitian matrix $A_N \in \mathbb{C}^{N \times N}$ is

$$\mu_N = \frac{1}{N} \sum_{i=1}^N \boldsymbol{\delta}_{\lambda_i(A_N)}.$$

Theorem (Marčenko–Pastur Law [Marčenko, Pastur'67]) $X_N \in \mathbb{C}^{N \times n}$ with i.i.d. zero mean, unit variance entries. As $N, n \to \infty$ with $N/n \to c \in (0, \infty)$, e.s.d. μ_N of $\frac{1}{n}X_NX_N^*$ satisfies

$$\mu_N \xrightarrow{\text{a.s.}} \mu_c$$

weakly, where

• $\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_N of Hermitian matrix $A_N \in \mathbb{C}^{N \times N}$ is

$$\mu_N = \frac{1}{N} \sum_{i=1}^N \boldsymbol{\delta}_{\lambda_i(A_N)}.$$

Theorem (Marčenko–Pastur Law [Marčenko, Pastur'67]) $X_N \in \mathbb{C}^{N \times n}$ with i.i.d. zero mean, unit variance entries. As $N, n \to \infty$ with $N/n \to c \in (0, \infty)$, e.s.d. μ_N of $\frac{1}{n}X_NX_N^*$ satisfies

$$\mu_N \xrightarrow{\text{a.s.}} \mu_c$$

weakly, where

•
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$

• on $(0,\infty)$, μ_c has continuous density f_c supported on $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}$$

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{N \to \infty} N/n$.

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{N \to \infty} N/n$.

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{N \to \infty} N/n$.

Let X_N with i.i.d. (0,1) entries, P a rank-K matrix with K finite as $N, n \to \infty$. In either of these scenarios:

$$\hat{C}_N = (I_N + P)^{\frac{1}{2}} \frac{1}{n} X_N X_N^* (I_N + P)^{\frac{1}{2}}$$
$$\hat{C}_N = \frac{1}{n} (X_N + P) (X_N + P)^*$$
$$\hat{C}_N = \frac{1}{n} X_N X_N^* + P$$

we have $\mu_N \xrightarrow{\text{a.s.}} \mu_c$ but some eigenvalues can escape the support!

Let X_N with i.i.d. (0,1) entries, P a rank-K matrix with K finite as $N, n \to \infty$. In either of these scenarios:

$$\hat{C}_N = (I_N + P)^{\frac{1}{2}} \frac{1}{n} X_N X_N^* (I_N + P)^{\frac{1}{2}}$$
$$\hat{C}_N = \frac{1}{n} (X_N + P) (X_N + P)^*$$
$$\hat{C}_N = \frac{1}{n} X_N X_N^* + P$$

we have $\mu_N \stackrel{\mathrm{a.s.}}{\longrightarrow} \mu_c$ but some eigenvalues can escape the support!

Density

Eigenvalues of $\hat{\boldsymbol{C}}_N$

Two fundamental properties (assume here $\hat{C}_N = (I_N + P)^{\frac{1}{2}} \frac{1}{n} X_N X_N^* (I_N + P)^{\frac{1}{2}}$): • Phase transition phenomenon: for $\omega_1 > \ldots > \omega_K \ge 0$ eigenvalues of P,

$$\lambda_i(\hat{C}_N) \xrightarrow{\text{a.s.}} \begin{cases} (1+\sqrt{c})^2, & \omega_i < \sqrt{c} \\ 1+\omega_i + c\frac{1+\omega_i}{\omega_i}, & \omega_i \ge \sqrt{c} \end{cases}$$

Two fundamental properties (assume here $\hat{C}_N = (I_N + P)^{\frac{1}{2}} \frac{1}{n} X_N X_N^* (I_N + P)^{\frac{1}{2}}$):

▶ Phase transition phenomenon: for $\omega_1 > \ldots > \omega_K \ge 0$ eigenvalues of P,

$$\lambda_i(\hat{C}_N) \xrightarrow{\text{a.s.}} \begin{cases} (1+\sqrt{c})^2, & \omega_i < \sqrt{c} \\ 1+\omega_i + c\frac{1+\omega_i}{\omega_i}, & \omega_i \ge \sqrt{c} \end{cases}$$

• Eigenvector angle: for u_1, \ldots, u_K eigenvectors of P and $\hat{u}_1, \ldots, \hat{u}_N$ of \hat{C}_N ,

Population spike ω_1

Other classical examples.

▶ If $X_N \in \mathbb{C}^{N \times N}$ Hermitian with i.i.d. entries of mean 0, variance 1/N, then (almost surely) $\mu_N \to \mu$ where μ has density f the semi-circle law

$$f(x) = \frac{1}{2\pi}\sqrt{(4-x^2)^+}.$$

▶ If $X_N \in \mathbb{C}^{N \times N}$ has with i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex eigenvalues distribute uniformly on the complex unit circle, i.e. $\mu_N \rightarrow \mu$ with density

$$f(z) = \frac{1}{\pi} \delta_{|z| \le 1}.$$

Semi-circle law

Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N=500

Circular law

Eigenvalues (imaginary part)

Figure: Eigenvalues of X_N with i.i.d. standard Gaussian entries, for N = 500.

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Assume n-node **undirected** graph G, with

• "intrinsic" average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.

Assume n-node undirected graph G, with

- "intrinsic" average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- ▶ k classes C_1, \ldots, C_k independent of $\{q_i\}$ of (large) sizes n_1, \ldots, n_k , with preferential attachment C_{ab} between C_a and C_b

Assume n-node undirected graph G, with

- "intrinsic" average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- ▶ k classes C_1, \ldots, C_k independent of $\{q_i\}$ of (large) sizes n_1, \ldots, n_k , with preferential attachment C_{ab} between C_a and C_b
- induces edge probability for node $i \in C_a$, $j \in C_b$,

 $P(i \sim j) = q_i q_j C_{ab}.$

Assume n-node undirected graph G, with

- "intrinsic" average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- ▶ k classes C_1, \ldots, C_k independent of $\{q_i\}$ of (large) sizes n_1, \ldots, n_k , with preferential attachment C_{ab} between C_a and C_b
- induces edge probability for node $i \in C_a$, $j \in C_b$,

 $P(i \sim j) = q_i q_j C_{ab}.$

• adjacency matrix A with $A_{ij} \sim \text{Bernoulli}(q_i q_j C_{ab})$.

Objective:

Understand and improve performance of spectral community detection methods:

▶ based on adjacency A or modularity $A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n}$ matrices (adapted to dense nets)

Objective:

Understand and improve performance of spectral community detection methods:

- ▶ based on adjacency A or modularity $A \frac{dd^{\mathsf{T}}}{d\mathsf{T}_1}$ matrices (adapted to dense nets)
- ▶ based on Bethe Hessian $(r^2 1)I_n rA + D$ (adapted to sparse nets!).

Objective:

Understand and improve performance of spectral community detection methods:

- ▶ based on adjacency A or modularity $A \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}}_{1n}}$ matrices (adapted to dense nets)
- ▶ based on Bethe Hessian $(r^2 1)I_n rA + D$ (adapted to sparse nets!).

Objective:

Understand and improve performance of spectral community detection methods:

- ▶ based on adjacency A or modularity $A \frac{dd^{\mathsf{T}}}{d\mathsf{T}_1}$ matrices (adapted to dense nets)
- ▶ based on Bethe Hessian $(r^2 1)I_n rA + D$ (adapted to sparse nets!).

Eigenv. 2 Eigenv. 1

 $\Downarrow p\text{-dimensional representation } \Downarrow$

Eigenvector 1

 $\Downarrow p\text{-dimensional representation} \Downarrow$

Eigenvector 1

Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with μ bi-modal (e.g., $\mu = \frac{3}{4}\delta_{0.1} + \frac{1}{4}\delta_{0.5}$)

- \rightarrow Leading eigenvectors of A (or modularity $A \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}}_{1,*}}$) biased by q_i distribution.
- \rightarrow Similar behavior for Bethe Hessian.

Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with μ bi-modal (e.g., $\mu = \frac{3}{4}\delta_{0.1} + \frac{1}{4}\delta_{0.5}$)

- \rightarrow Leading eigenvectors of A (or modularity $A \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_{n}}$) biased by q_i distribution.
- \rightarrow Similar behavior for Bethe Hessian.

Connectivity Model: $P(i \sim j) = q_i q_j C_{ab}$ for $i \in C_a$, $j \in C_b$.

Dense Regime Assumptions: Non trivial regime when, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

Connectivity Model: $P(i \sim j) = q_i q_j C_{ab}$ for $i \in C_a$, $j \in C_b$.

Dense Regime Assumptions: Non trivial regime when, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

 \Rightarrow Community information is weak but highly REDUNDANT!

Connectivity Model: $P(i \sim j) = q_i q_j C_{ab}$ for $i \in C_a$, $j \in C_b$.

Dense Regime Assumptions: Non trivial regime when, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

⇒ Community information is weak but highly REDUNDANT!

Considered Matrix:

For $\alpha \in [0,1]$, (and with $D = \operatorname{diag}(A1_n) = \operatorname{diag}(d)$ the degree matrix)

$$L_{\alpha} = n^{2\alpha - \frac{1}{2}} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right] D^{-\alpha}.$$

Connectivity Model: $P(i \sim j) = q_i q_j C_{ab}$ for $i \in C_a$, $j \in C_b$.

Dense Regime Assumptions: Non trivial regime when, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

⇒ Community information is weak but highly REDUNDANT!

Considered Matrix:

For $\alpha \in [0,1]$, (and with $D = \operatorname{diag}(A1_n) = \operatorname{diag}(d)$ the degree matrix)

$$L_{\alpha} = n^{2\alpha - \frac{1}{2}} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right] D^{-\alpha}.$$

Our results in a nutshell:

• we find optimal α_{opt} having best phase transition.

Connectivity Model: $P(i \sim j) = q_i q_j C_{ab}$ for $i \in C_a$, $j \in C_b$.

Dense Regime Assumptions: Non trivial regime when, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

⇒ Community information is weak but highly REDUNDANT!

Considered Matrix:

For $\alpha \in [0,1]$, (and with $D = \operatorname{diag}(A1_n) = \operatorname{diag}(d)$ the degree matrix)

$$L_{\alpha} = n^{2\alpha - \frac{1}{2}} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right] D^{-\alpha}.$$

Our results in a nutshell:

- we find optimal α_{opt} having best phase transition.
- we find consistent estimator $\hat{\alpha}_{opt}$ from A alone.

Connectivity Model: $P(i \sim j) = q_i q_j C_{ab}$ for $i \in C_a$, $j \in C_b$.

Dense Regime Assumptions: Non trivial regime when, as $n \to \infty$,

$$C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \ M_{ab} = O(1).$$

⇒ Community information is weak but highly REDUNDANT!

Considered Matrix:

For $\alpha \in [0,1]$, (and with $D = \operatorname{diag}(A1_n) = \operatorname{diag}(d)$ the degree matrix)

$$L_{\alpha} = n^{2\alpha - \frac{1}{2}} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right] D^{-\alpha}.$$

Our results in a nutshell:

- we find optimal α_{opt} having best phase transition.
- we find consistent estimator $\hat{\alpha}_{opt}$ from A alone.
- we claim optimal eigenvector regularization $D^{\alpha-1}u$, u eigenvector of L_{α} . \Rightarrow Never proposed before!

Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent) For each $\alpha \in [0, 1]$, as $n \to \infty$, $||L_{\alpha} - \tilde{L}_{\alpha}|| \to 0$ almost surely, where

$$\begin{split} L_{\alpha} &= n^{2\alpha-1} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_{n}} \right] D^{-\alpha} \\ \tilde{L}_{\alpha} &= \frac{1}{m_{\mu}^{2\alpha}} \left[\frac{1}{\sqrt{n}} D_{q}^{-\alpha} X D_{q}^{-\alpha} + U \Lambda U^{\mathsf{T}} \right] \end{split}$$

with $D_q = \text{diag}(\{q_i\})$, $m_\mu = \int t \mu(dt)$, X zero-mean random matrix,

$$\begin{split} U &= \begin{bmatrix} D_q^{1-\alpha} \frac{J}{\sqrt{n}} & \frac{1}{nm_{\mu}} D_q^{-\alpha} X \mathbf{1}_n \end{bmatrix}, \quad \text{rank } k+1 \\ \Lambda &= \begin{bmatrix} (I_k - \mathbf{1}_k c^{\mathsf{T}}) \mathcal{M}(I_k - c\mathbf{1}_k^{\mathsf{T}}) & -\mathbf{1}_k \\ \mathbf{1}_k^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \end{split}$$

and $J = [j_1, \ldots, j_k]$, $j_a = [0, \ldots, 0, 1_{n_a}^{\mathsf{T}}, 0, \ldots, 0]^{\mathsf{T}} \in \mathbb{R}^n$ canonical vector of class \mathcal{C}_a .

Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent) For each $\alpha \in [0, 1]$, as $n \to \infty$, $||L_{\alpha} - \tilde{L}_{\alpha}|| \to 0$ almost surely, where

$$\begin{split} L_{\alpha} &= n^{2\alpha-1} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_{n}} \right] D^{-\alpha} \\ \tilde{L}_{\alpha} &= \frac{1}{m_{\mu}^{2\alpha}} \left[\frac{1}{\sqrt{n}} D_{q}^{-\alpha} X D_{q}^{-\alpha} + U \Lambda U^{\mathsf{T}} \right] \end{split}$$

with $D_q = \text{diag}(\{q_i\})$, $m_\mu = \int t \mu(dt)$, X zero-mean random matrix,

$$\begin{split} U &= \begin{bmatrix} D_q^{1-\alpha} \frac{J}{\sqrt{n}} & \frac{1}{nm_{\mu}} D_q^{-\alpha} X \mathbf{1}_n \end{bmatrix}, \quad \textit{rank } k+1 \\ \Lambda &= \begin{bmatrix} (I_k - \mathbf{1}_k c^{\mathsf{T}}) \mathcal{M} (I_k - c\mathbf{1}_k^{\mathsf{T}}) & -\mathbf{1}_k \\ \mathbf{1}_k^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \end{split}$$

and $J = [j_1, \ldots, j_k]$, $j_a = [0, \ldots, 0, 1_{n_a}^{\mathsf{T}}, 0, \ldots, 0]^{\mathsf{T}} \in \mathbb{R}^n$ canonical vector of class \mathcal{C}_a .

Consequences:

▶ isolated eigenvalues beyond phase transition $\leftrightarrow \lambda(M) >$ "spectrum edge" \Rightarrow optimal choice α_{opt} of α from study of noise spectrum.

Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent) For each $\alpha \in [0, 1]$, as $n \to \infty$, $||L_{\alpha} - \tilde{L}_{\alpha}|| \to 0$ almost surely, where

$$\begin{split} L_{\alpha} &= n^{2\alpha-1} D^{-\alpha} \left[A - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_{n}} \right] D^{-\alpha} \\ \tilde{L}_{\alpha} &= \frac{1}{m_{\mu}^{2\alpha}} \left[\frac{1}{\sqrt{n}} D_{q}^{-\alpha} X D_{q}^{-\alpha} + U \Lambda U^{\mathsf{T}} \right] \end{split}$$

with $D_q = \text{diag}(\{q_i\})$, $m_\mu = \int t \mu(dt)$, X zero-mean random matrix,

$$\begin{split} U &= \begin{bmatrix} D_q^{1-\alpha} \frac{J}{\sqrt{n}} & \frac{1}{nm_{\mu}} D_q^{-\alpha} X \mathbf{1}_n \end{bmatrix}, \quad \textit{rank } k+1 \\ \Lambda &= \begin{bmatrix} (I_k - \mathbf{1}_k c^{\mathsf{T}}) \mathcal{M} (I_k - c\mathbf{1}_k^{\mathsf{T}}) & -\mathbf{1}_k \\ \mathbf{1}_k^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \end{split}$$

and $J = [j_1, \ldots, j_k]$, $j_a = [0, \ldots, 0, 1_{n_a}^{\mathsf{T}}, 0, \ldots, 0]^{\mathsf{T}} \in \mathbb{R}^n$ canonical vector of class \mathcal{C}_a .

Consequences:

- ▶ isolated eigenvalues beyond phase transition $\leftrightarrow \lambda(M) >$ "spectrum edge" \Rightarrow optimal choice α_{opt} of α from study of noise spectrum.
- eigenvectors correlated to $D_q^{1-\alpha}J$
 - \Rightarrow Natural regularization by $D^{\alpha-1}J!$

Eigenvalue Spectrum

Figure: Eigenvalues of $m_{\mu}^2 L_1$, K = 3, n = 2000, $c_1 = 0.3$, $c_2 = 0.3$, $c_3 = 0.4$, $\mu = \frac{1}{2} \delta_{q_1} + \frac{1}{2} \delta_{q_2}$, $q_1 = 0.4$, $q_2 = 0.9$, M defined by $M_{ii} = 12$, $M_{ij} = -4$, $i \neq j$.

Phase Transition

Theorem (Phase Transition)

For $\alpha \in [0,1]$, isolated eigenvalue $\lambda_i(L_\alpha)$ if $|\lambda_i(\bar{M})| > \tau^{\alpha}$, $\bar{M} = (\mathcal{D}(c) - cc^{\mathsf{T}})M$,

$$au^{lpha} = \lim_{x\downarrow S^{lpha}_+} - rac{1}{e^{lpha}_2(x)}, ext{ phase transition threshold}$$

with $[S^{\alpha}_{-}, S^{\alpha}_{+}]$ limiting eigenvalue support of $m^{2\alpha}_{\mu}L_{\alpha}$ and $e^{\alpha}_{2}(x)$ $(|x| > S^{\alpha}_{+})$ solution of

$$e_{1}^{\alpha}(x) = \int \frac{q^{1-2\alpha}}{-x-q^{1-2\alpha}e_{1}^{\alpha}(x)+q^{2-2\alpha}e_{2}^{\alpha}(x)}\mu(dq)$$
$$e_{2}^{\alpha}(x) = \int \frac{q^{2-2\alpha}}{-x-q^{1-2\alpha}e_{1}^{\alpha}(x)+q^{2-2\alpha}e_{2}^{\alpha}(x)}\mu(dq).$$

In this case, $-\frac{1}{e_2^{\alpha}(\lambda_i(m_{\mu}^{2\alpha}L_{\alpha}))} = \lambda_i(\bar{M}).$

Phase Transition

Theorem (Phase Transition)

For $\alpha \in [0,1]$, isolated eigenvalue $\lambda_i(L_\alpha)$ if $|\lambda_i(\bar{M})| > \tau^{\alpha}$, $\bar{M} = (\mathcal{D}(c) - cc^{\mathsf{T}})M$,

$$au^{lpha} = \lim_{x\downarrow S^{lpha}_+} - rac{1}{e^{lpha}_2(x)}, ext{ phase transition threshold}$$

with $[S^{\alpha}_{-}, S^{\alpha}_{+}]$ limiting eigenvalue support of $m^{2\alpha}_{\mu}L_{\alpha}$ and $e^{\alpha}_{2}(x)$ $(|x| > S^{\alpha}_{+})$ solution of

$$e_{1}^{\alpha}(x) = \int \frac{q^{1-2\alpha}}{-x - q^{1-2\alpha}e_{1}^{\alpha}(x) + q^{2-2\alpha}e_{2}^{\alpha}(x)}\mu(dq)$$
$$e_{2}^{\alpha}(x) = \int \frac{q^{2-2\alpha}}{-x - q^{1-2\alpha}e_{1}^{\alpha}(x) + q^{2-2\alpha}e_{2}^{\alpha}(x)}\mu(dq).$$

In this case, $-\frac{1}{e_2^{\alpha}(\lambda_i(m_{\mu}^{2\alpha}L_{\alpha}))} = \lambda_i(\bar{M}).$

Worst-case clustering for $\lambda_i(\bar{M}) = \min_{\alpha} \tau_{\alpha}$.

• Optimal $\alpha = \alpha_{opt}$:

$$\alpha_{\rm opt} = \operatorname{argmin}_{\alpha \in [0,1]} \left\{ \tau_{\alpha} \right\}.$$

Phase Transition

Theorem (Phase Transition)

For $\alpha \in [0,1]$, isolated eigenvalue $\lambda_i(L_\alpha)$ if $|\lambda_i(\bar{M})| > \tau^\alpha$, $\bar{M} = (\mathcal{D}(c) - cc^{\mathsf{T}})M$,

$$au^{lpha} = \lim_{x\downarrow S^{lpha}_+} - rac{1}{e^{lpha}_2(x)}, ext{ phase transition threshold}$$

with $[S^{\alpha}_{-}, S^{\alpha}_{+}]$ limiting eigenvalue support of $m^{2\alpha}_{\mu}L_{\alpha}$ and $e^{\alpha}_{2}(x)$ $(|x| > S^{\alpha}_{+})$ solution of

$$e_{1}^{\alpha}(x) = \int \frac{q^{1-2\alpha}}{-x - q^{1-2\alpha}e_{1}^{\alpha}(x) + q^{2-2\alpha}e_{2}^{\alpha}(x)}\mu(dq)$$
$$e_{2}^{\alpha}(x) = \int \frac{q^{2-2\alpha}}{-x - q^{1-2\alpha}e_{1}^{\alpha}(x) + q^{2-2\alpha}e_{2}^{\alpha}(x)}\mu(dq).$$

In this case, $-\frac{1}{e_2^{\alpha}(\lambda_i(m_{\mu}^{2\alpha}L_{\alpha}))} = \lambda_i(\bar{M}).$

Worst-case clustering for $\lambda_i(\bar{M}) = \min_{\alpha} \tau_{\alpha}$.

• Optimal $\alpha = \alpha_{opt}$:

$$\alpha_{\rm opt} = \operatorname{argmin}_{\alpha \in [0,1]} \left\{ \tau_{\alpha} \right\}.$$

From $\max_i \left| \frac{d_i}{\sqrt{d^{\mathsf{T}} \mathbf{1}_n}} - q_i \right| \xrightarrow{\text{a.s.}} 0$, we obtain consistent estimator $\hat{\alpha}_{\text{opt}}$ of α_{opt} .

(Modularity)

(Bethe Hessian)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$, $q_1 = 0.1$, $q_2 = 0.5$, $c_1 = c_2 = \frac{1}{4}$, $c_3 = \frac{1}{2}$, $M = 100I_3$.

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ $q_1 = 0.1$, $q_2 = 0.5$, $c_1 = c_2 = \frac{1}{4}$, $c_3 = \frac{1}{2}$, $M = 100I_3$.

Eigenvalue ℓ ($\ell = -1/e_2^{\alpha}(\lambda)$ beyond phase transition)

Figure: Largest eigenvalue λ of $m_{\mu}^{2}L_{\alpha}$ as a function of the largest eigenvalue ℓ of $(\mathcal{D}(c) - cc^{\mathrm{T}})M$, for $\mu = \frac{3}{4}\delta_{q_{1}} + \frac{1}{4}\delta_{q_{2}}$ with $q_{1} = 0.1$ and $q_{2} = 0.5$, for $\alpha \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\mathrm{opt}}\}$ (indicated below the graph). Here, $\alpha_{\mathrm{opt}} = 0.07$. Circles indicate phase transition. Beyond phase transition, $\ell = -1/e_{2}^{\alpha}(\lambda)$.

Eigenvalue ℓ ($\ell = -1/e_2^{lpha}(\lambda)$ beyond phase transition)

Figure: Largest eigenvalue λ of $m_{\mu}^2 L_{\alpha}$ as a function of the largest eigenvalue ℓ of $(\mathcal{D}(c) - cc^{\mathrm{T}})M$, for $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 = 0.5$, for $\alpha \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\mathrm{opt}}\}$ (indicated below the graph). Here, $\alpha_{\mathrm{opt}} = 0.07$. Circles indicate phase transition. Beyond phase transition, $\ell = -1/e_{\alpha}^{2}(\lambda)$.

Eigenvalue ℓ ($\ell = -1/e_2^{lpha}(\lambda)$ beyond phase transition)

Figure: Largest eigenvalue λ of $m_{\mu}^2 L_{\alpha}$ as a function of the largest eigenvalue ℓ of $(\mathcal{D}(c) - cc^{\mathrm{T}})M$, for $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 = 0.5$, for $\alpha \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\mathrm{opt}}\}$ (indicated below the graph). Here, $\alpha_{\mathrm{opt}} = 0.07$. Circles indicate phase transition. Beyond phase transition, $\ell = -1/e_{\alpha}^{2}(\lambda)$.

Figure: Overlap performance for n = 3000, K = 3, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{\text{opt}} = 0.07$.

Figure: Overlap performance for n = 3000, K = 3, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{\text{opt}} = 0.07$.

Figure: Overlap performance for n = 3000, K = 3, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{\text{opt}} = 0.07$.

Figure: Overlap performance for n = 3000, K = 3, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{\text{opt}} = 0.07$.

Figure: Overlap performance for n = 3000, K = 3, $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1$ and $q_2 \in [0.1, 0.9]$, $M = 10(2I_3 - 1_3I_3^{\rm T})$, $c_i = \frac{1}{3}$.

Figure: Evolution of α_{opt} for $\mu = \frac{3}{4}\delta_{q_1} + \frac{1}{4}\delta_{q_2}$ with $q_1 = 0.1, q_2 \in [0.1, 0.9]$, $M = 10(2I_3 - 1_3I_3^T), c_i = \frac{1}{3}$.

Simulated Performance Results ("sparse" power law for q_i)

Eigenvalue ℓ ($\ell = -1/e_2^{\alpha}(\lambda)$ beyond phase transition)

Figure: Largest eigenvalue λ of $m_{\mu}^2 L_{\alpha}$ as a function of the largest eigenvalue ℓ of $(\mathcal{D}(c) - cc^{\rm T})M$, for μ a power law with exponent 3 and support [0.05, 0.3], for $\alpha \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \alpha_{\rm opt}\}$ (indicated below the graph). Here, $\alpha_{\rm opt} = 0.28$. Circles indicate phase transition. Beyond phase transition, $\ell = -1/e_2^{\alpha}(\lambda)$.

Simulated Performance Results ("sparse" power law for q_i)

Figure: Overlap performance for $n=3000,~K=3,~c_i=\frac{1}{3},~\mu$ a power law with exponent 3 and support $[0.05,0.3],~M=\Delta I_3,$ for $\Delta\in[10,150].$ Here $\alpha_{\rm opt}=0.28.$
Analysis of eigenvectors reveals:

- eigenvectors are "noisy staircase vectors"
- conjectured Gaussian fluctuations of eigenvector entries

Analysis of eigenvectors reveals:

- eigenvectors are "noisy staircase vectors"
- conjectured Gaussian fluctuations of eigenvector entries
- ▶ for $q_i = q_0$ (homogeneous case), same variance for all entries in same class
- in non-homogeneous case, we can compute "average variance per class" ⇒ Heuristic asymptotic performance upper-bound using EM.

Theoretical Performance Results (uniform distribution for q_i)

Figure: Theoretical probability of correct recovery for n = 2000, K = 2, $c_1 = 0.6$, $c_2 = 0.4$, μ uniformly distributed in [0.2, 0.8], $M = \Delta I_2$, for $\Delta \in [0, 20]$.

Theoretical Performance Results (uniform distribution for q_i)

Figure: Probability of correct recovery for n = 2000, K = 2, $c_1 = 0.6$, $c_2 = 0.4$, μ uniformly distributed in [0.2, 0.8], $M = \Delta I_2$, for $\Delta \in [0, 20]$.

Results on Benchmark Graphs

Graph (n, K)	$\alpha = 0$	$\alpha = \frac{1}{2}$	$\alpha = 1$	$\alpha = \alpha_{\rm opt}$	(value)	BH
Polbooks (105, 3)	0.743	0.757	0.214	0.743	(0)	0.757
Adjnoun (112, 2)	0.571	0.714	0.000	0.571	(0)	0.661
Karate (34, 2)	0.176	0.941	0.353	0.176	(0)	1.000
Dolphins (62, 2)	0.968	0.968	0.387	0.968	(0.07)	0.935
Polblogs (1221, 2)	0.897	0.035	0.040	0.897	(0)	0.304
Football (115, 12)	0.858	0.905	0.905	0.905	(0.16)	0.924

Table: Overlap performance on benchmark graphs.

- Degree heterogeneity breaks community structures in eigenvectors.
 - \Rightarrow Compensation by D^{-1} normalization of eigenvectors.

- Degree heterogeneity breaks community structures in eigenvectors. \Rightarrow Compensation by D^{-1} normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix A not trivial to solve.
 - \Rightarrow With heterogeneous degrees, we found a good on-line method.

- Degree heterogeneity breaks community structures in eigenvectors. \Rightarrow Compensation by D^{-1} normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix A not trivial to solve.
 - \Rightarrow With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.

Main findings:

- Degree heterogeneity breaks community structures in eigenvectors. \Rightarrow Compensation by D^{-1} normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix A not trivial to solve.
 - \Rightarrow With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.

Main findings:

- Degree heterogeneity breaks community structures in eigenvectors. \Rightarrow Compensation by D^{-1} normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix A not trivial to solve.
 - \Rightarrow With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.

- Key assumption: $C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}$.
 - \Rightarrow Everything collapses if different regime.

Main findings:

- Degree heterogeneity breaks community structures in eigenvectors. \Rightarrow Compensation by D^{-1} normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix A not trivial to solve.
 - \Rightarrow With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.

- ▶ Key assumption: C_{ab} = 1 + M_{ab}/√n.
 ⇒ Everything collapses if different regime.
- Simulations on small networks in fact give ridiculous arbitrary results.

Main findings:

- Degree heterogeneity breaks community structures in eigenvectors. \Rightarrow Compensation by D^{-1} normalization of eigenvectors.
- Classical debate over "best normalization" of adjacency (or modularity) matrix A not trivial to solve.
 - \Rightarrow With heterogeneous degrees, we found a good on-line method.
- Simulations support good performances even for "rather sparse" settings.

- Key assumption: $C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}$. \Rightarrow Everything collapses if different regime.
- Simulations on small networks in fact give ridiculous arbitrary results.
- When is sparse sparse and dense dense?
 - in theory, $d_i = O(\log(n))$ is dense...
 - in practice, assuming dense regime, eigenvalues smear beyond support edges in critical scenarios.

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes S_1, \ldots, S_k .

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes S_1, \ldots, S_k .
- Typical metric to optimize:

(RatioCut)
$$\operatorname{argmin}_{\mathcal{S}_1 \cup \ldots \cup \mathcal{S}_k = \{1, \ldots, n\}} \sum_{i=1}^k \sum_{\substack{j \in \mathcal{S}_i \\ j \notin \mathcal{S}_i}} \frac{\kappa(x_j, x_{\bar{j}})}{|\mathcal{S}_i|}$$

for some similarity kernel $\kappa(x,y) \ge 0$ (large if x similar to y).

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes S_1, \ldots, S_k .
- Typical metric to optimize:

$$(\text{RatioCut}) \text{ argmin}_{\mathcal{S}_1 \cup \ldots \cup \mathcal{S}_k = \{1, \ldots, n\}} \sum_{i=1}^k \sum_{\substack{j \in \mathcal{S}_i \\ j \notin \mathcal{S}_i}} \frac{\kappa(x_j, x_{\bar{j}})}{|\mathcal{S}_i|}$$

for some similarity kernel $\kappa(x, y) \ge 0$ (large if x similar to y).

Can be shown equivalent to

(RatioCut) $\operatorname{argmin}_{M \in \mathcal{M}} \operatorname{tr} M^{\mathsf{T}}(D-K)M$ where $\mathcal{M} \subset \mathbb{R}^{n \times k} \cap \left\{ M; \ M_{ij} \in \{0, |\mathcal{S}_j|^{-\frac{1}{2}}\} \right\}$ (in particular, $M^{\mathsf{T}}M = I_k$) and $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \ D_{ii} = \sum_{i=1}^n K_{ij}.$

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes S_1, \ldots, S_k .
- Typical metric to optimize:

$$(\text{RatioCut}) \text{ argmin}_{\mathcal{S}_1 \cup \ldots \cup \mathcal{S}_k = \{1, \ldots, n\}} \sum_{i=1}^k \sum_{\substack{j \in \mathcal{S}_i \\ j \notin \mathcal{S}_i}} \frac{\kappa(x_j, x_{\bar{j}})}{|\mathcal{S}_i|}$$

for some similarity kernel $\kappa(x, y) \ge 0$ (large if x similar to y).

Can be shown equivalent to

(RatioCut) $\operatorname{argmin}_{M \in \mathcal{M}} \operatorname{tr} M^{\mathsf{T}}(D-K)M$ where $\mathcal{M} \subset \mathbb{R}^{n \times k} \cap \left\{ M; \ M_{ij} \in \{0, |\mathcal{S}_j|^{-\frac{1}{2}} \} \right\}$ (in particular, $M^{\mathsf{T}}M = I_k$) and

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \ D_{ii} = \sum_{j=1}^n K_{ij}.$$

But integer problem! Usually NP-complete.

Towards kernel spectral clustering

► Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

(RatioCut) $\operatorname{argmin}_{M, M^{\mathsf{T}}M=I_{K}} \operatorname{tr} M^{\mathsf{T}}(D-K)M$

- i.e., eigenvector problem:
 - 1. find eigenvectors of smallest eigenvalues
 - 2. retrieve classes from eigenvector components

Towards kernel spectral clustering

► Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

(RatioCut)
$$\operatorname{argmin}_{M, M^{\mathsf{T}}M=I_{K}} \operatorname{tr} M^{\mathsf{T}}(D-K)M$$

- i.e., eigenvector problem:
 - 1. find eigenvectors of smallest eigenvalues
 - 2. retrieve classes from eigenvector components
- Refinements:
 - working on K, D K, $I_n D^{-1}K$, $I_n D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$, etc.
 - several steps algorithms: Ng-Jordan-Weiss, Shi-Malik, etc.

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data.

Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- Let alone when both p and n are large (BigData setting)

Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- Let alone when both p and n are large (BigData setting)

Objectives and Roadmap:

 \blacktriangleright Develop mathematical analysis framework for BigData kernel spectral clustering $(p,n\rightarrow\infty)$

Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- ▶ Let alone when both *p* and *n* are large (BigData setting)

Objectives and Roadmap:

- \blacktriangleright Develop mathematical analysis framework for BigData kernel spectral clustering $(p,n\rightarrow\infty)$
- Understand:
 - 1. Phase transition effects (i.e., when is clustering possible?)
 - 2. Content of each eigenvector
 - 3. Influence of kernel function
 - 4. Performance comparison of clustering algorithms

Current state:

- Algorithms derived from ad-hoc procedures (e.g., relaxation).
- Little understanding of performance, even for Gaussian mixtures!
- ▶ Let alone when both *p* and *n* are large (BigData setting)

Objectives and Roadmap:

- Develop mathematical analysis framework for BigData kernel spectral clustering $(p, n \rightarrow \infty)$
- Understand:
 - 1. Phase transition effects (i.e., when is clustering possible?)
 - 2. Content of each eigenvector
 - 3. Influence of kernel function
 - 4. Performance comparison of clustering algorithms

Methodology:

- Use statistical assumptions (Gaussian mixture)
- Benefit from doubly-infinite independence and random matrix tools

Gaussian mixture model:

- $x_1,\ldots,x_n\in\mathbb{R}^p$,
- k classes C_1, \ldots, C_k ,
- $x_1, \dots, x_{n_1} \in \mathcal{C}_1, \dots, x_{n-n_k+1}, \dots, x_n \in \mathcal{C}_k,$ $\mathcal{C}_a = \{ x \mid x \sim \mathcal{N}(\mu_a, C_a) \}.$
- $\triangleright C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}.$

Then, for $x_i \in \mathcal{C}_a$, with $w_i \sim N(0, C_a)$,

$$x_i = \mu_a + w_i.$$

Gaussian mixture model:

- $x_1,\ldots,x_n\in\mathbb{R}^p$,
- k classes C_1, \ldots, C_k ,
- $x_1, \dots, x_{n_1} \in \mathcal{C}_1, \dots, x_{n-n_k+1}, \dots, x_n \in \mathcal{C}_k,$ $\mathcal{C}_a = \{ x \mid x \sim \mathcal{N}(\mu_a, C_a) \}.$

Then, for $x_i \in C_a$, with $w_i \sim N(0, C_a)$,

$$x_i = \mu_a + w_i.$$

Assumption (Convergence Rate)

As $n o \infty$,

- 1. Data scaling: $\frac{p}{n} \rightarrow c_0 \in (0,\infty)$,
- 2. Class scaling: $\frac{n_a}{n} \rightarrow c_a \in (0, 1)$,
- 3. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a$ and $\mu_a^{\circ} \triangleq \mu_a \mu^{\circ}$, then

 $\|\mu_a^\circ\| = O(1)$

4. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a$ and $C_a^{\circ} \triangleq C_a - C^{\circ}$, then

$$||C_a|| = O(1), \quad \frac{1}{\sqrt{p}} \operatorname{tr} C_a^\circ = O(1).$$

Kernel Matrix:

Kernel matrix of interest:

$$K = \left\{ f\left(\frac{1}{p} \|x_i - x_j\|^2\right) \right\}_{i,j=1}^n$$

for some sufficiently smooth nonnegative f.

Kernel Matrix:

Kernel matrix of interest:

$$K = \left\{ f\left(\frac{1}{p} \|x_i - x_j\|^2\right) \right\}_{i,j=1}^n$$

for some sufficiently smooth nonnegative f.

▶ We study the normalized Laplacian:

$$L = nD^{-\frac{1}{2}}KD^{-\frac{1}{2}}$$

with $D = \operatorname{diag}(K1_n)$.

Difficulty: L is a very intractable random matrix

- \blacktriangleright non-linear f
- \blacktriangleright non-trivial dependence between entries of L

Difficulty: L is a very intractable random matrix

- \blacktriangleright non-linear f
- non-trivial dependence between entries of L

Strategy:

- 1. Find random equivalent \hat{L} (i.e., $\|L \hat{L}\| \stackrel{\rm a.s.}{\longrightarrow} 0$ as $n,p \to \infty)$ based on:
 - concentration: $K_{ij} \to \text{constant} \text{ as } n, p \to \infty \text{ (for all } i \neq j \text{)}$
 - Taylor expansion around limit point

Difficulty: L is a very intractable random matrix

- ▶ non-linear f
- non-trivial dependence between entries of L

Strategy:

- 1. Find random equivalent \hat{L} (i.e., $\|L \hat{L}\| \stackrel{\rm a.s.}{\longrightarrow} 0$ as $n,p \to \infty)$ based on:
 - concentration: $K_{ij} \to \text{constant} \text{ as } n, p \to \infty \text{ (for all } i \neq j \text{)}$
 - Taylor expansion around limit point
- 2. Apply spiked random matrix approach to study:
 - existence of isolated eigenvalues in \hat{L} : phase transition

Difficulty: L is a very intractable random matrix

- ▶ non-linear f
- \blacktriangleright non-trivial dependence between entries of L

Strategy:

- 1. Find random equivalent \hat{L} (i.e., $\|L \hat{L}\| \stackrel{\rm a.s.}{\longrightarrow} 0$ as $n,p \to \infty)$ based on:
 - concentration: $K_{ij} \to \text{constant} \text{ as } n, p \to \infty \text{ (for all } i \neq j \text{)}$
 - Taylor expansion around limit point
- 2. Apply spiked random matrix approach to study:
 - existence of isolated eigenvalues in \hat{L} : phase transition
 - eigenvector projections on canonical class-basis

Random Matrix Equivalent

Results on K:

• Key Remark: Under our assumptions, uniformly on $i, j \in \{1, ..., n\}$,

$$\frac{1}{p} \|x_i - x_j\|^2 \xrightarrow{\text{a.s.}} \tau$$

for some common limit τ .

Random Matrix Equivalent

Results on K:

• Key Remark: Under our assumptions, uniformly on $i, j \in \{1, ..., n\}$,

$$\frac{1}{p} \, \|x_i - x_j\|^2 \xrightarrow{\text{a.s.}} \tau$$

for some common limit τ .

▶ large dimensional approximation for *K*:

$$K = \underbrace{f(\tau)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}}_{O_{\parallel \cdot \parallel}(n)} + \underbrace{\sqrt{n}A_{1}}_{\text{low rank, } O_{\parallel \cdot \parallel}(\sqrt{n})} + \underbrace{A_{2}}_{\text{informative terms, } O_{\parallel \cdot \parallel}(1)}$$

Random Matrix Equivalent

Results on K:

• Key Remark: Under our assumptions, uniformly on $i, j \in \{1, ..., n\}$,

$$\frac{1}{p} \, \|x_i - x_j\|^2 \xrightarrow{\text{a.s.}} \tau$$

for some common limit τ .

▶ large dimensional approximation for *K*:

$$K = \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \underbrace{\sqrt{n} A_1}_{\text{low rank, } O_{\|\cdot\|}(\sqrt{n})} + \underbrace{A_2}_{\text{informative terms, } O_{\|\cdot\|}(1)}$$

difficult to handle (3 orders to manipulate!)
Results on K:

• Key Remark: Under our assumptions, uniformly on $i, j \in \{1, ..., n\}$,

$$\frac{1}{p} \|x_i - x_j\|^2 \xrightarrow{\text{a.s.}} \tau$$

for some common limit τ .

large dimensional approximation for K:

$$K = \underbrace{f(\tau)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{\sqrt{n}A_{1}}_{\text{low rank, } O_{\|\cdot\|}(\sqrt{n})} + \underbrace{A_{2}}_{\text{informative terms, } O_{\|\cdot\|}(1)}$$

difficult to handle (3 orders to manipulate!)

Observation: Spectrum of *L*:

- Dominant eigenvalue n with eigenvector $D^{\frac{1}{2}} 1_n$
- All other eigenvalues of order O(1).

Results on K:

• Key Remark: Under our assumptions, uniformly on $i, j \in \{1, ..., n\}$,

$$\frac{1}{p} \|x_i - x_j\|^2 \xrightarrow{\text{a.s.}} \tau$$

for some common limit τ .

large dimensional approximation for K:

$$K = \underbrace{f(\tau)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{\sqrt{n}A_{1}}_{\text{low rank, } O_{\|\cdot\|}(\sqrt{n})} + \underbrace{A_{2}}_{\text{informative terms, } O_{\|\cdot\|}(1)}$$

difficult to handle (3 orders to manipulate!)

Observation: Spectrum of *L*:

- Dominant eigenvalue n with eigenvector $D^{\frac{1}{2}} 1_n$
- All other eigenvalues of order O(1).
- \Rightarrow Naturally leads to study:
 - Projected normalized Laplacian:

$$L' = nD^{-\frac{1}{2}}KD^{-\frac{1}{2}} - n\frac{D^{\frac{1}{2}}\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}D^{\frac{1}{2}}}{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}.$$

• Dominant (normalized) eigenvector $\frac{D^{\frac{1}{2}} \mathbf{1}_n}{\sqrt{\mathbf{1}_n^{\mathsf{T}} D \mathbf{1}_n}}$.

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{\text{a.s.}} 0$, where

$$\hat{L}' = -2\frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p} P W^{\mathsf{T}} W P + U B U^{\mathsf{T}}\right] + \alpha(\tau) I_n$$

and $\tau = \frac{2}{p} \operatorname{tr} C^{\circ}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}$,

$$\begin{split} U &= \left[\frac{1}{\sqrt{p}}J, \Phi, \psi\right] \in \mathbb{R}^{n \times (2k+4)} \\ B &= \left[\begin{array}{ccc} B_{11} & I_k - 1_k c^{\mathsf{T}} & \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t \\ I_k - c1_k^{\mathsf{T}} & 0_{k \times k} & 0_{k \times 1} \\ \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t^{\mathsf{T}} & 0_{1 \times k} & \frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)} \\ \end{array}\right] \in \mathbb{R}^{(2k+4) \times (2k+4)} \\ B_{11} &= M^{\mathsf{T}}M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t^{\mathsf{T}} - \frac{f''(\tau)}{f'(\tau)}T + \frac{p}{n}\frac{f(\tau)\alpha(\tau)}{2f'(\tau)}1_k 1_k^{\mathsf{T}} \in \mathbb{R}^{k \times k}. \end{split}$$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{\text{a.s.}} 0$, where

$$\hat{L}' = -2\frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p}PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}\right] + \alpha(\tau)I_n$$

and $\tau = \frac{2}{p} \operatorname{tr} C^{\circ}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}$,

$$\begin{split} U &= \left[\frac{1}{\sqrt{p}}J, \Phi, \psi\right] \in \mathbb{R}^{n \times (2k+4)} \\ B &= \left[\begin{array}{ccc} B_{11} & I_k - 1_k c^{\mathsf{T}} & \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t \\ I_k - c1_k^{\mathsf{T}} & 0_{k \times k} & 0_{k \times 1} \\ \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t^{\mathsf{T}} & 0_{1 \times k} & \frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)} \end{array}\right] \in \mathbb{R}^{(2k+4) \times (2k+4)} \\ B_{11} &= M^{\mathsf{T}}M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)tt^{\mathsf{T}} - \frac{f''(\tau)}{f'(\tau)}T + \frac{p}{n}\frac{f(\tau)\alpha(\tau)}{2f'(\tau)}1_k1_k^{\mathsf{T}} \in \mathbb{R}^{k \times k}. \end{split}$$

Important Notations: $\frac{1}{\sqrt{p}}J = [j_1, \dots, j_k] \in \mathbb{R}^{n \times k}$, j_a canonical vector of class C_a .

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{\text{a.s.}} 0$, where

$$\hat{L}' = -2\frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p}PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}\right] + \alpha(\tau)I_n$$

and $\tau = \frac{2}{p} \operatorname{tr} C^{\circ}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}$,

$$\begin{split} U &= \left[\frac{1}{\sqrt{p}}J, \Phi, \psi\right] \in \mathbb{R}^{n \times (2k+4)} \\ B &= \left[\begin{array}{ccc} B_{11} & I_k - 1_k c^{\mathsf{T}} & \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) t \\ I_k - c1_k^{\mathsf{T}} & 0_{k \times k} & 0_{k \times 1} \\ \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) t^{\mathsf{T}} & 0_{1 \times k} & \frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)} \\ \end{array}\right] \in \mathbb{R}^{(2k+4) \times (2k+4)} \\ B_{11} &= M^{\mathsf{T}}M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) tt^{\mathsf{T}} - \frac{f''(\tau)}{f'(\tau)}T + \frac{p}{n} \frac{f(\tau)\alpha(\tau)}{2f'(\tau)} 1_k 1_k^{\mathsf{T}} \in \mathbb{R}^{k \times k}. \end{split}$$

Important Notations: $M = [\mu_1^\circ, \dots, \mu_k^\circ] \in \mathbb{R}^{n \times k}, \ \mu_a^\circ = \mu_a - \sum_{b=1}^k \frac{n_b}{n} \mu_b.$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where

$$\hat{L}' = -2\frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p}PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}\right] + \alpha(\tau)I_n$$

and $\tau = \frac{2}{p} \operatorname{tr} C^{\circ}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}$,

$$\begin{split} U &= \left[\frac{1}{\sqrt{p}}J, \Phi, \psi\right] \in \mathbb{R}^{n \times (2k+4)} \\ B &= \left[\begin{array}{ccc} B_{11} & I_k - 1_k c^{\mathsf{T}} & \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t \\ I_k - c1^{\mathsf{T}} & 0_{k \times k} & 0_{k \times 1} \\ \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t^{\mathsf{T}} & 0_{1 \times k} & \frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)} \end{array}\right] \in \mathbb{R}^{(2k+4) \times (2k+4)} \\ B_{11} &= M^{\mathsf{T}}M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)t^{\mathsf{T}} - \frac{f''(\tau)}{f'(\tau)}T + \frac{p}{n}\frac{f(\tau)\alpha(\tau)}{2f'(\tau)}1_k 1_k^{\mathsf{T}} \in \mathbb{R}^{k \times k}. \end{split}$$

Important Notations:

ŀ

$$t = \left\lfloor \frac{1}{\sqrt{p}} \operatorname{tr} C_1^{\circ}, \dots, \frac{1}{\sqrt{p}} \operatorname{tr} C_k^{\circ} \right\rfloor \in \mathbb{R}^k, \ C_a^{\circ} = C_a - \sum_{b=1}^k \frac{n_b}{n} C_b.$$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{\text{a.s.}} 0$, where

$$\hat{L}' = -2\frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p}PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}\right] + \alpha(\tau)I_n$$

and $\tau = \frac{2}{p} \operatorname{tr} C^{\circ}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}$,

$$\begin{split} U &= \left[\frac{1}{\sqrt{p}}J, \Phi, \psi\right] \in \mathbb{R}^{n \times (2k+4)} \\ B &= \left[\begin{array}{ccc} B_{11} & I_k - 1_k c^{\mathsf{T}} & \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) t \\ I_k - c1_k^{\mathsf{T}} & 0_{k \times k} & 0_{k \times 1} \\ \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) t^{\mathsf{T}} & 0_{1 \times k} & \frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)} \\ \end{array}\right] \in \mathbb{R}^{(2k+4) \times (2k+4)} \\ B_{11} &= M^{\mathsf{T}}M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) tt^{\mathsf{T}} - \frac{f''(\tau)}{f'(\tau)}T + \frac{p}{n} \frac{f(\tau)\alpha(\tau)}{2f'(\tau)} 1_k 1_k^{\mathsf{T}} \in \mathbb{R}^{k \times k}. \end{split}$$

Important Notations:

$$T = \left\{ \frac{1}{p} \operatorname{tr} C_a^{\circ} C_b^{\circ} \right\}_{a,b=1}^k \in \mathbb{R}^{k \times k}, \ C_a^{\circ} = C_a - \sum_{b=1}^k \frac{n_b}{n} C_b.$$

Some consequences:

▶ \hat{L}' is a spiked model: UBU^{T} seen as low rank perturbation of $\frac{1}{p}PW^{\mathsf{T}}WP$

Some consequences:

- ▶ \hat{L}' is a spiked model: UBU^{T} seen as low rank perturbation of $\frac{1}{p}PW^{\mathsf{T}}WP$
- If f'(τ) = 0,
 L' asymptotically deterministic!
 only t and T can be discriminated upon
- If $f''(\tau) = 0$, (e.g., f(x) = x) T unused

► If
$$\frac{5f'(\tau)}{8f(\tau)} = \frac{f''(\tau)}{2f'(\tau)}$$
, t (seemingly) unused

Isolated eigenvalues: Gaussian inputs

Figure: Eigenvalues of L' and $\hat{L}',\,k=3,\,p=2048,\,n=512,\,c_1=c_2=1/4,\,c_3=1/2,\,[\mu_a]_j=4\delta_{aj},\,C_a=(1+2(a-1)/\sqrt{p})I_p,\,f(x)=\exp(-x/2).$

Two-step Strategy:

- 1. Study limiting eigenvalue distribution (and its support S) of $\frac{1}{p}PW^{\mathsf{T}}WP$
- 2. Solve, for $\lambda \notin S$,

$$\det\left(\frac{1}{p}PW^{\mathsf{T}}WP + UBU^{\mathsf{T}} - \lambda I_n\right) = 0.$$

Equivalent to solving smaller dimensional:

$$\det\left(BU^{\mathsf{T}}Q_{\lambda}U\right) = 0$$

with $Q_{\lambda} = (\frac{1}{p} P W^{\mathsf{T}} W P - \lambda I_n)^{-1}$.

Isolated Eigenvalues

Lemma (Deterministic Equivalent)

For $z \in \mathbb{C}$ away from eigenvalues of $\frac{1}{p} P W^{\mathsf{T}} W P$ and

$$Q_z = \left(\frac{1}{p}PW^{\mathsf{T}}WP - zI_n\right)^{-1}, \quad \tilde{Q}_z = \left(\frac{1}{p}WPW^{\mathsf{T}} - zI_p\right)^{-1}$$

Then, as $n \to \infty$,

$$\begin{aligned} Q_z \leftrightarrow \bar{Q}_z &\triangleq c_0 \operatorname{diag} \left\{ g_a(z) \mathbf{1}_{n_a} \right\}_{a=1}^k - \left\{ \left(\frac{1}{z} + c_0 \frac{g_a(z)g_b(z)}{\sum_{i=1}^k c_i g_i(z)} \right) \frac{\mathbf{1}_{n_a} \mathbf{1}_{n_b}^{\mathsf{T}}}{n} \right\}_{a,b=1}^k \\ \tilde{Q}_z \leftrightarrow \bar{Q}_z &\triangleq \left(-z \left[I_p + \sum_{a=1}^k c_a g_a(z) C_a \right] \right)^{-1} \end{aligned}$$

where (g_1, \ldots, g_k) are the unique (Stieltjes transforms) solutions to

$$g_a(z) = \left(-zc_0\left[1 + \frac{1}{p}\operatorname{tr} C_a\bar{\tilde{Q}}_z\right]\right)^{-1}$$

and $A_n \leftrightarrow B_n$ means $\frac{1}{n} \operatorname{tr} D_n A_n - \frac{1}{n} \operatorname{tr} D_n B_n \xrightarrow{\text{a.s.}} 0$ and $d_{1,n}^{\mathsf{T}}(A_n - B_n) d_{2,n} \xrightarrow{\text{a.s.}} 0$ for deterministic bounded D_n , $d_{i,n}$.

Isolated Eigenvalues

Theorem ((Useful) isolated eigenvalues) Define the $k \times k$ matrix

$$G_z = h(\tau, z)I_k + D_{\tau, z}\Gamma_z$$

where

$$D_{\tau,z} = -zh(\tau,z)M^{\mathsf{T}}\bar{\tilde{Q}}_{z}M - h(\tau,z)\frac{f''(\tau)}{f'(\tau)}T + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)tt^{\mathsf{T}}$$
$$\Gamma_{z} = \operatorname{diag}\left\{c_{a}g_{a}(z)\right\}_{a=1}^{k} - \left\{\frac{c_{a}g_{a}(z)c_{b}g_{b}(z)}{\sum_{i=1}^{k}c_{i}g_{i}(z)}\right\}_{a,b=1}^{k}$$
$$h(\tau,z) = 1 + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)\sum_{a=1}^{k}c_{a}g_{a}(z)\frac{2}{p}\operatorname{tr} C_{a}^{2}.$$

Isolated Eigenvalues

Theorem ((Useful) isolated eigenvalues) Define the $k \times k$ matrix

 $G_z = h(\tau, z)I_k + D_{\tau, z}\Gamma_z$

where

$$\begin{split} D_{\tau,z} &= -zh(\tau,z)M^{\mathsf{T}}\bar{\tilde{Q}}_{z}M - h(\tau,z)\frac{f''(\tau)}{f'(\tau)}T + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)tt^{\mathsf{T}}\\ \Gamma_{z} &= \mathrm{diag}\left\{c_{a}g_{a}(z)\right\}_{a=1}^{k} - \left\{\frac{c_{a}g_{a}(z)c_{b}g_{b}(z)}{\sum_{i=1}^{k}c_{i}g_{i}(z)}\right\}_{a,b=1}^{k}\\ h(\tau,z) &= 1 + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right)\sum_{a=1}^{k}c_{a}g_{a}(z)\frac{2}{p}\mathrm{tr}\,C_{a}^{2}. \end{split}$$

If $\rho \notin S$ is such that $h(\tau, \rho) \neq 0$ and G_{ρ} has a zero eigenvalue of multiplicity m_{ρ} , then

 $-2rac{f(\tau)}{f'(\tau)}(L-\alpha(\tau)I_n)$ has $m_{
ho}$ isolated eigenvalues converging to ho.

Isolated eigenvalues: MNIST

Figure: Eigenvalues of L' (red) and (equivalent Gaussian model) \hat{L}' (white), MNIST data, $p=784,\,n=192.$

Isolated eigenvalues: MNIST

Figure: Eigenvalues of L' (red) and (equivalent Gaussian model) \hat{L}' (white), MNIST data, $p=784,\,n=192.$

Strategy:

• Study "easy" eigenvector $D^{\frac{1}{2}}1_n$

Strategy:

- Study "easy" eigenvector $D^{\frac{1}{2}}1_n$
- \blacktriangleright Independently, for each spike eigenvalue, study eigenvector projections on basis J

Strategy:

- Study "easy" eigenvector $D^{\frac{1}{2}}1_n$
- \blacktriangleright Independently, for each spike eigenvalue, study eigenvector projections on basis J

Dominant Eigenvector:

Proposition (Eigenvector $D^{\frac{1}{2}}1_n$) We have

$$\frac{D^{\frac{1}{2}}\mathbf{1}_{n}}{\sqrt{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}} = \frac{1_{n}}{\sqrt{n}} + \frac{1}{n\sqrt{c_{0}}}\frac{f'(\tau)}{2f(\tau)} \left[\{t_{a}\mathbf{1}_{n_{a}}\}_{a=1}^{k} + \operatorname{diag}\left\{\sqrt{\frac{2}{p}\operatorname{tr}\left(C_{a}^{2}\right)}\mathbf{1}_{n_{a}}\right\}_{a=1}^{k}\varphi \right] + o(n^{-1})$$

with $\varphi \sim \mathcal{N}(0, I_n)$.

Strategy:

- Study "easy" eigenvector $D^{\frac{1}{2}}1_n$
- > Independently, for each spike eigenvalue, study eigenvector projections on basis J

Dominant Eigenvector:

Proposition (Eigenvector $D^{\frac{1}{2}}1_n$) We have

$$\frac{D^{\frac{1}{2}}\mathbf{1}_{n}}{\sqrt{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}} = \frac{1_{n}}{\sqrt{n}} + \frac{1}{n\sqrt{c_{0}}}\frac{f'(\tau)}{2f(\tau)} \left[\left\{ t_{a}\mathbf{1}_{n_{a}} \right\}_{a=1}^{k} + \operatorname{diag} \left\{ \sqrt{\frac{2}{p}\operatorname{tr}\left(C_{a}^{2}\right)}\mathbf{1}_{n_{a}} \right\}_{a=1}^{k} \varphi \right] + o(n^{-1})$$

with $\varphi \sim \mathcal{N}(0, I_n)$.

Remark:

- $D^{\frac{1}{2}} 1_n$ block-wise constant + noise
- only information about $\operatorname{tr} C_a^{\circ}!$

Isolated eigenvectors

Theorem (Eigenvector projections)

Let ρ isolated eigenvalue and Π_{ρ} its associated subspace in L, then

$$\frac{1}{p}J^{\mathsf{T}}\hat{\Pi}_{\rho}J = -h(\tau,\rho)\Gamma_{\rho}\Xi_{\rho} + o(1)$$

where $J = [j_1, \ldots, j_k]$ canonical class-basis, and

$$\Xi_{\rho} = \sum_{i=1}^{m_{\rho}} \frac{(V_{r,\rho})_i (V_{l,\rho})_i^{\mathsf{T}}}{(V_{l,\rho})_i^{\mathsf{T}} G_{\rho}' (V_{r,\rho})_i}$$

with $V_{r,\rho}, V_{l,\rho} \in \mathbb{C}^{k \times m_{\rho}}$ right and left eigenvectors of G_{ρ} associated with eig. zero.

Isolated eigenvectors

Theorem (Eigenvector projections)

Let ρ isolated eigenvalue and Π_{ρ} its associated subspace in L, then

$$\frac{1}{p}J^{\mathsf{T}}\hat{\Pi}_{\rho}J = -h(\tau,\rho)\Gamma_{\rho}\Xi_{\rho} + o(1)$$

where $J = [j_1, \ldots, j_k]$ canonical class-basis, and

$$\Xi_{\rho} = \sum_{i=1}^{m_{\rho}} \frac{(V_{r,\rho})_i (V_{l,\rho})_i^{\mathsf{T}}}{(V_{l,\rho})_i^{\mathsf{T}} G_{\rho}' (V_{r,\rho})_i}$$

with $V_{r,\rho}, V_{l,\rho} \in \mathbb{C}^{k \times m_{\rho}}$ right and left eigenvectors of G_{ρ} associated with eig. zero.

Remark: $m_{\rho} = 1$ case

- $[J^{\mathsf{T}}uu^{\mathsf{T}}J]_{aa} = |j_a^{\mathsf{T}}u|^2$: eigenvector "level" in class \mathcal{C}_a
- $E = 1 \frac{1}{n} \operatorname{tr} (\operatorname{diag}(\{1/c_i\})J^{\mathsf{T}} u u^{\mathsf{T}} J)$: total noise energy
- Eigenvector levels given by eigenvectors of $G_{\rho} = h(\tau, \rho)I_k + D_{\tau, \rho}\Gamma_{\rho}$.

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red), versus Gaussian equivalent model (black), and theoretical findings (blue).

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red), versus Gaussian equivalent model (black), and theoretical findings (blue).

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red), versus Gaussian equivalent model (black), and theoretical findings (blue).

• Condition for Existence: $|\ell - 1| > \sqrt{c_0}$ (classical spike random matrix result)

- Condition for Existence: $|\ell 1| > \sqrt{c_0}$ (classical spike random matrix result)
- **Eigenvalues**: isolated eigenvalue ρ of $-\frac{f(\tau)}{2f'(\tau)}(L-\alpha(\tau)I_n)$

$$\rho = \frac{\ell}{c_0} + \frac{\ell}{\ell - 1}$$

Case
$$C_1 = \ldots = C_k = I_k$$

- Condition for Existence: $|\ell 1| > \sqrt{c_0}$ (classical spike random matrix result)
- **Eigenvalues**: isolated eigenvalue ρ of $-\frac{f(\tau)}{2f'(\tau)}(L-\alpha(\tau)I_n)$

$$\rho = \frac{\ell}{c_0} + \frac{\ell}{\ell - 1}$$

Eigenvectors:

$$\frac{1}{n}J^{\mathsf{T}}\Pi_{\rho}J = \left(\frac{1}{\ell} - \frac{c_0}{\ell(\ell-1)^2}\right)\operatorname{diag}(\{c_i\})M^{\mathsf{T}}\Upsilon_{\rho}\Upsilon_{\rho}^{\mathsf{T}}M\operatorname{diag}(\{c_i\}) + o(1).$$

Case
$$C_1 = \ldots = C_k = I_k$$

- Condition for Existence: $|\ell 1| > \sqrt{c_0}$ (classical spike random matrix result)
- **Eigenvalues**: isolated eigenvalue ρ of $-\frac{f(\tau)}{2f'(\tau)}(L-\alpha(\tau)I_n)$

$$\rho = \frac{\ell}{c_0} + \frac{\ell}{\ell - 1}$$

Eigenvectors:

$$\frac{1}{n}J^{\mathsf{T}}\Pi_{\rho}J = \left(\frac{1}{\ell} - \frac{c_0}{\ell(\ell-1)^2}\right)\operatorname{diag}(\{c_i\})M^{\mathsf{T}}\Upsilon_{\rho}\Upsilon_{\rho}^{\mathsf{T}}M\operatorname{diag}(\{c_i\}) + o(1).$$

Remark: Does not depend on *f*!

Corollary: let $\gamma = [\gamma_1, \dots, \gamma_k]^{\mathsf{T}}$ and

$$\ell = \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) \left(2 + \sum_{a=1}^{k} c_a \gamma_a^2\right).$$

Then,

Corollary: let $\gamma = [\gamma_1, \dots, \gamma_k]^{\mathsf{T}}$ and

$$\ell = \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) \left(2 + \sum_{a=1}^{k} c_a \gamma_a^2\right)$$

Then,

▶ Condition for Existence: $|\ell - 1| > \sqrt{c_0}$ (classical spike random matrix result)

Corollary: let $\gamma = [\gamma_1, \dots, \gamma_k]^{\mathsf{T}}$ and

$$\ell = \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) \left(2 + \sum_{a=1}^{k} c_a \gamma_a^2\right).$$

Then,

- Condition for Existence: $|\ell 1| > \sqrt{c_0}$ (classical spike random matrix result)
- ► **Eigenvalues**: isolated eigenvalue ρ of $-\frac{f(\tau)}{2f'(\tau)}(L-\alpha(\tau)I_n)$

$$\rho = \frac{\ell}{c_0} + \frac{\ell}{\ell - 1}$$

Corollary: let $\gamma = [\gamma_1, \dots, \gamma_k]^\mathsf{T}$ and

$$\ell = \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) \left(2 + \sum_{a=1}^{k} c_a \gamma_a^2\right).$$

Then,

- Condition for Existence: $|\ell 1| > \sqrt{c_0}$ (classical spike random matrix result)
- **Eigenvalues**: isolated eigenvalue ρ of $-\frac{f(\tau)}{2f'(\tau)}(L-\alpha(\tau)I_n)$

$$\rho = \frac{\ell}{c_0} + \frac{\ell}{\ell - 1}$$

Eigenvectors:

$$\frac{1}{n} J^{\mathsf{T}} \Pi_{\rho} J = \frac{1 - \frac{c_0}{(\ell-1)^2}}{2 + \sum_{a=1}^{k} c_a \gamma_a^2} \operatorname{diag}(\{c_i\}) \gamma \gamma^{\mathsf{T}} \operatorname{diag}(\{c_i\}) + o(1).$$

Corollary: let $\gamma = [\gamma_1, \dots, \gamma_k]^\mathsf{T}$ and

$$\ell = \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)}\right) \left(2 + \sum_{a=1}^{k} c_a \gamma_a^2\right).$$

Then,

- Condition for Existence: $|\ell 1| > \sqrt{c_0}$ (classical spike random matrix result)
- Eigenvalues: isolated eigenvalue ρ of $-\frac{f(\tau)}{2f'(\tau)}(L-\alpha(\tau)I_n)$

$$\rho = \frac{\ell}{c_0} + \frac{\ell}{\ell - 1}$$

Eigenvectors:

$$\frac{1}{n} J^{\mathsf{T}} \Pi_{\rho} J = \frac{1 - \frac{c_0}{(\ell-1)^2}}{2 + \sum_{a=1}^{k} c_a \gamma_a^2} \operatorname{diag}(\{c_i\}) \gamma \gamma^{\mathsf{T}} \operatorname{diag}(\{c_i\}) + o(1).$$

Remark:

- only ONE isolated eigenvalue
- eigenvector alignment directly linked to γ_a 's.

Further Results

Beyond Class-wise means:

- per-class fluctuations
- per-class cross-eigenvector fluctuations
Further Results

Beyond Class-wise means:

- per-class fluctuations
- per-class cross-eigenvector fluctuations

Consequences:

- \blacktriangleright see M isolated eigenvectors as n points in \mathbb{R}^M
- clustering $x_1, \ldots, x_n \Leftrightarrow$ clustering n points in \mathbb{R}^M

Further Results

Beyond Class-wise means:

- per-class fluctuations
- per-class cross-eigenvector fluctuations

Consequences:

- \blacktriangleright see M isolated eigenvectors as n points in \mathbb{R}^M
- clustering $x_1, \ldots, x_n \Leftrightarrow$ clustering n points in \mathbb{R}^M

Method:

per-class fluctuations: for each a, estimate

tr
$$\left(\operatorname{diag}(j_a)\hat{\Pi}_{\rho}\right)$$

 \Rightarrow for $\hat{\Pi}_{\rho} = u_{\rho}u_{\rho}^{*}$, gives access to tr $(\operatorname{diag}(j_{a})u_{\rho}u_{\rho}^{*}) = u_{\rho}^{*}\operatorname{diag}(j_{a})u_{\rho}$

Further Results

Beyond Class-wise means:

- per-class fluctuations
- per-class cross-eigenvector fluctuations

Consequences:

- \blacktriangleright see M isolated eigenvectors as n points in \mathbb{R}^M
- clustering $x_1, \ldots, x_n \Leftrightarrow$ clustering n points in \mathbb{R}^M

Method:

per-class fluctuations: for each a, estimate

tr
$$\left(\operatorname{diag}(j_a)\hat{\Pi}_{\rho}\right)$$

 $\Rightarrow \text{ for } \hat{\Pi}_{\rho} = u_{\rho}u_{\rho}^{*} \text{, gives access to } \text{tr} \left(\text{diag}(j_{a})u_{\rho}u_{\rho}^{*} \right) = u_{\rho}^{*} \frac{\text{diag}(j_{a})u_{\rho}}{u_{\rho}}$

▶ cross-eigenvector fluctuations: for each a and (ρ_1, ρ_2) , estimate

$$\frac{1}{p} J^{\mathsf{T}} \hat{\Pi}_{\rho_1} \operatorname{diag}(j_a) \hat{\Pi}_{\rho_2} J$$

 $\Rightarrow \text{ for } \hat{\Pi}_{\rho} = u_{\rho}u_{\rho}^{*}\text{, gives access to } (u_{\rho_{1}}^{*}\operatorname{diag}(j_{a})u_{\rho_{2}}) \times (\frac{1}{\sqrt{p}}J^{\mathsf{T}}u_{\rho_{1}})(\frac{1}{\sqrt{p}}u_{\rho_{2}}^{*}J)$

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red), versus Gaussian equivalent model (black), and theoretical findings (blue).

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red), versus Gaussian equivalent model (black), and theoretical findings (blue).

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red), versus Gaussian equivalent model (black), and theoretical findings (blue).

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1and 2-standard deviations in **blue**. Class 1 in **red**, Class 2 in **black**, Class 3 in green.

Surprising findings:

Surprising findings:

• "Good kernel functions" *f* need not be decreasing.

Surprising findings:

- "Good kernel functions" *f* need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at τ .

Surprising findings:

- "Good kernel functions" *f* need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at τ .
- \blacktriangleright More importantly, clustering possible despite $\|x_i-x_j\|^2 \to \tau,$ i.e., no first order data difference
 - \Rightarrow Breaks original intuitions and problem layout!

Surprising findings:

- "Good kernel functions" *f* need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at τ .
- \blacktriangleright More importantly, clustering possible despite $\|x_i-x_j\|^2 \to \tau,$ i.e., no first order data difference
 - \Rightarrow Breaks original intuitions and problem layout!

Validity of the Results:

Surprising findings:

- "Good kernel functions" *f* need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at τ .
- \blacktriangleright More importantly, clustering possible despite $\|x_i-x_j\|^2 \to \tau,$ i.e., no first order data difference
 - \Rightarrow Breaks original intuitions and problem layout!

Validity of the Results:

- Needs a concentration of measure assumption: $||x_i x_j||^2 \rightarrow \tau$.
- ▶ Invalid for heavy-tailed distributions (where $||x_i|| = ||\sqrt{\tau_i}z_i||$ needs not converge).

Surprising findings:

- "Good kernel functions" *f* need not be decreasing.
- Dominant parameters in large dimensions are first three derivatives at τ .
- \blacktriangleright More importantly, clustering possible despite $\|x_i-x_j\|^2 \to \tau,$ i.e., no first order data difference
 - \Rightarrow Breaks original intuitions and problem layout!

Validity of the Results:

- Needs a concentration of measure assumption: $||x_i x_j||^2 \rightarrow \tau$.
- ▶ Invalid for heavy-tailed distributions (where $||x_i|| = ||\sqrt{\tau_i}z_i||$ needs not converge).
- Suprising fit between theory and practice: are large images essentially Gaussian vectors?
 - kernels extract primarily first order properties (means, covariances)
 - with no fancy image processing (rotations, scale invariance), may be strong enough features.

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Problem Statement

Context: Similar to clustering:

• Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, but with labelled and unlabelled data.

Problem Statement

Context: Similar to clustering:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, but with labelled and unlabelled data.
- Problem statement: $(d_i = [K1_n]_i)$

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2$$

such that $F_{ia} = \delta_{\{x_i \in C_a\}}$, for all labelled x_i .

Problem Statement

Context: Similar to clustering:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, but with labelled and unlabelled data.
- Problem statement: $(d_i = [K1_n]_i)$

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2$$

such that $F_{ia} = \delta_{\{x_i \in C_a\}}$, for all labelled x_i .

▶ Solution: denoting $F^{(u)} \in \mathbb{R}^{n_u \times k}$, $F^{(l)} \in \mathbb{R}^{n_l \times k}$ the restriction to unlabelled/labelled data,

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

where we naturally decompose

$$K = \begin{bmatrix} K_{(l,l)} & K_{(l,u)} \\ K_{(u,l)} & K_{(u,u)} \end{bmatrix}$$
$$D = \begin{bmatrix} D_{(l)} & 0 \\ 0 & D^{(u)} \end{bmatrix} = \operatorname{diag} \{K1_n\}.$$

From $F^{(u)}$, classification algorithm:

Classify
$$x_i$$
 in $C_a \Leftrightarrow F_{ia} = \max_{b \in \{1, \dots, k\}} \{F_{ib}\}.$

From $F^{(u)}$, classification algorithm:

Classify
$$x_i$$
 in $C_a \iff F_{ia} = \max_{b \in \{1, \dots, k\}} \{F_{ib}\}.$

Objectives: For $x_i \sim \mathcal{N}(\mu_a, C_a)$, and as $n, p \to \infty$, $(n_u, n_l \to \infty \text{ or } n_u \to \infty, n_l = O(1))$

• From $F^{(u)}$, classification algorithm:

$$\mathsf{Classify} \ x_i \ \mathsf{in} \ \mathcal{C}_a \ \Leftrightarrow \ F_{ia} = \max_{b \in \{1, \dots, k\}} \{F_{ib}\} \,.$$

Objectives: For $x_i \sim \mathcal{N}(\mu_a, C_a)$, and as $n, p \to \infty$, $(n_u, n_l \to \infty \text{ or } n_u \to \infty, n_l = O(1))$

- ▶ Tractable approximation (in norm) for the vectors $[F_{(u)}]_{\cdot,a}$, a = 1, ..., k
- ▶ Joint asymptotic behavior of $[F_{(u)}]_{i,.}$ ⇒ From which classification probability is retrieved.

• From $F^{(u)}$, classification algorithm:

$$\mathsf{Classify} \ x_i \ \mathsf{in} \ \mathcal{C}_a \ \Leftrightarrow \ F_{ia} = \max_{b \in \{1, \dots, k\}} \{F_{ib}\} \,.$$

Objectives: For $x_i \sim \mathcal{N}(\mu_a, C_a)$, and as $n, p \to \infty$, $(n_u, n_l \to \infty \text{ or } n_u \to \infty, n_l = O(1))$

- ▶ Tractable approximation (in norm) for the vectors $[F_{(u)}]_{\cdot,a}$, a = 1, ..., k
- ▶ Joint asymptotic behavior of $[F_{(u)}]_{i,.}$ ⇒ From which classification probability is retrieved.
- Understanding the impact of α
 - \Rightarrow Finding optimal α choice online?

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), $n=192, \, p=784, \, n_l/n=1/16,$ Gaussian kernel.

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), $n=192, \, p=784, \, n_l/n=1/16,$ Gaussian kernel.

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

▶ Intuitively, $[F^{(u)}]_{i,a}$ should be close to 1 if $x_i \in C_a$ or 0 if $x_i \notin C_a$ (from cost function $K_{ij}(F_{i,a} - F_{j,a})^2$)

- ▶ Intuitively, $[F^{(u)}]_{i,a}$ should be close to 1 if $x_i \in C_a$ or 0 if $x_i \notin C_a$ (from cost function $K_{ij}(F_{i,a} F_{j,a})^2$)
- ► Here, strong class-wise biases

- ▶ Intuitively, $[F^{(u)}]_{i,a}$ should be close to 1 if $x_i \in C_a$ or 0 if $x_i \notin C_a$ (from cost function $K_{ij}(F_{i,a} F_{j,a})^2$)
- Here, strong class-wise biases
- But, more surprisingly, it still works very well !

- ▶ Intuitively, $[F^{(u)}]_{i,a}$ should be close to 1 if $x_i \in C_a$ or 0 if $x_i \notin C_a$ (from cost function $K_{ij}(F_{i,a} F_{j,a})^2$)
- Here, strong class-wise biases
- But, more surprisingly, it still works very well !

We need to understand why...

Figure: Centered Vectors $[F_{(u)}^{\circ}]_{\cdot,a} = [F_{(u)} - \frac{1}{k}F_{(u)}1_k1_k^{\mathsf{T}}]_{\cdot,a}$, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Centered Vectors $[F_{(u)}^{\circ}]_{\cdot,a} = [F_{(u)} - \frac{1}{k}F_{(u)}1_k1_k^{\mathsf{T}}]_{\cdot,a}$, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Centered Vectors $[F_{(u)}^{\circ}]_{\cdot,a} = [F_{(u)} - \frac{1}{k}F_{(u)}1_k1_k^{\mathsf{T}}]_{\cdot,a}$, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Performance as a function of α , for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

Theoretical Findings

Method: We assume $n_l/n \rightarrow c_l \in (0,1)$ ("numerous" labelled data setting)

Recall that we aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

- A priori difficulty linked to resolvent of involved random matrix!
- Painstaking product of complex matrices.

Theoretical Findings

Method: We assume $n_l/n \rightarrow c_l \in (0,1)$ ("numerous" labelled data setting)

Recall that we aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

- A priori difficulty linked to resolvent of involved random matrix!
- Painstaking product of complex matrices.
- ▶ Using Taylor expansion of K as $n, p \to \infty$, we get

$$\begin{split} K_{(u,u)} &= f(\tau) \mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}} + O_{\|\cdot\|} (n^{-\frac{1}{2}}) \\ D_{(u)} &= n f(\tau) I_{n_u} + O(n^{\frac{1}{2}}) \end{split}$$

and similarly for $K_{(u,l)}$, $D_{(l)}$.
Theoretical Findings

Method: We assume $n_l/n \rightarrow c_l \in (0,1)$ ("numerous" labelled data setting)

Recall that we aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

- A priori difficulty linked to resolvent of involved random matrix!
- Painstaking product of complex matrices.
- Using Taylor expansion of K as $n, p \to \infty$, we get

$$\begin{split} K_{(u,u)} &= f(\tau) \mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}} + O_{\|\cdot\|} (n^{-\frac{1}{2}}) \\ D_{(u)} &= n f(\tau) I_{n_u} + O(n^{\frac{1}{2}}) \end{split}$$

and similarly for $K_{(u,l)}$, $D_{(l)}$.

So that

$$\left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} = \left(I_{n_u} - \frac{\mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}}}{n} + O_{\|\cdot\|} (n^{-\frac{1}{2}})\right)^{-1}$$

which can be easily Taylor expanded!

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[v + \alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}} \right] + \underbrace{O(n^{-1})}_{\text{Information is here!}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

Many consequences:

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[v + \alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}} \right] + \underbrace{O(n^{-1})}_{\text{Information is here!}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Many consequences:
 - Random non-informative bias linked to v

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[v + \alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}} \right] + \underbrace{O(n^{-1})}_{l \neq a}$$

Information is here!

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Many consequences:
 - Random non-informative bias linked to v
 - Strong Impact of n_{l,a}!

 \Rightarrow All $n_{l,a}$ must be equal **OR** $F^{(l)}$ need be scaled!

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[v + \alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}} \right] + \underbrace{O(n^{-1})}_{l \neq a}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Many consequences:
 - Random non-informative bias linked to v
 - Strong Impact of n_{l,a}!
 - \Rightarrow All $n_{l,a}$ must be equal **OR** $F^{(l)}$ need be scaled!
 - Additional per-class bias $\alpha t_a 1_{n_u}$: no information here \Rightarrow Forces the choice

$$\alpha = 0 + \frac{\beta}{\sqrt{n}}$$

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[v + \alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}} \right] + \underbrace{O(n^{-1})}_{l \neq a}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Many consequences:
 - Random non-informative bias linked to v
 - Strong Impact of n_{l,a}!
 - \Rightarrow All $n_{l,a}$ must be equal **OR** $F^{(l)}$ need be scaled!
 - Additional per-class bias $\alpha t_a 1_{n_u}$: no information here \Rightarrow Forces the choice

$$\alpha = 0 + \frac{\beta}{\sqrt{n}}.$$

Relevant information hidden in smaller order terms!

Simulations Probability of correct classification 0.8 0.60.4-0.50.5-10 Index

Figure: Performance as a function of α , for 3-class MNIST data (zeros, ones, twos), n = 192, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Performance as a function of α , for 3-class MNIST data (zeros, ones, twos), n = 192, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Performance as a function of α , for 2-class MNIST data (zeros, ones), n = 1568, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Performance as a function of α , for 2-class MNIST data (zeros, ones), n = 1568, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Context: All data are labelled, we classify the next incoming one:

• Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k = 2 classes.

Context: All data are labelled, we classify the next incoming one:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k = 2 classes.
- For kernel $K(x,y) = \phi(x)^{\mathsf{T}} \phi(y), \ \phi(x) \in \mathbb{R}^{q}$, find hyperplane directed by (w,b) to "isolate each class".

$$(w,b) = \operatorname{argmin}_{w \in \mathbb{R}^{q-1}} ||w||^2 + \frac{1}{n} \sum_{i=1}^n c(x_i; w, b)$$

for a certain cost function c(x; w, b).

Context: All data are labelled, we classify the next incoming one:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k = 2 classes.
- For kernel $K(x,y) = \phi(x)^{\mathsf{T}} \phi(y)$, $\phi(x) \in \mathbb{R}^{q}$, find hyperplane directed by (w,b) to "isolate each class".

$$(w,b) = \operatorname{argmin}_{w \in \mathbb{R}^{q-1}} ||w||^2 + \frac{1}{n} \sum_{i=1}^n c(x_i; w, b)$$

for a certain cost function c(x; w, b).

Solutions:

Classical SVM:

$$c(x_i; w, b) = \imath_{\{y_i(w^{\mathsf{T}}\phi(x_i) + b) \ge 1\}}$$

with $y_i = \pm 1$ depending on class.

 \Rightarrow Solved by quadratic programming methods.

 \Rightarrow Analysis requires joint RMT + convex optimization tools (very interesting but left for later...).

Context: All data are labelled, we classify the next incoming one:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k = 2 classes.
- For kernel $K(x,y) = \phi(x)^{\mathsf{T}} \phi(y)$, $\phi(x) \in \mathbb{R}^{q}$, find hyperplane directed by (w,b) to "isolate each class".

$$(w,b) = \operatorname{argmin}_{w \in \mathbb{R}^{q-1}} ||w||^2 + \frac{1}{n} \sum_{i=1}^n c(x_i; w, b)$$

for a certain cost function c(x; w, b).

Solutions:

Classical SVM:

$$c(x_i; w, b) = \imath_{\{y_i(w^{\mathsf{T}}\phi(x_i) + b) \ge 1\}}$$

with $y_i = \pm 1$ depending on class.

 \Rightarrow Solved by quadratic programming methods.

 \Rightarrow Analysis requires joint RMT + convex optimization tools (very interesting but left for later...).

LS SVM:

$$c(x_i; w, b) = \gamma e_i^2 \equiv (y_i - w^{\mathsf{T}} \phi(x_i) - b)^2.$$

 \Rightarrow Explict solution (but not sparse!).

For new datum x, decision based on (sign of)

$$g(x) = \alpha^{\mathsf{T}} K(\cdot, x) + b$$

where $\alpha \in \mathbb{R}^n$ and b are solution to

$$\begin{bmatrix} 0 & \mathbf{1}_n^\mathsf{T} \\ \mathbf{1}_n & K + \frac{n}{\gamma} I_n \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

with $y = [y_i]_{i=1}^n$, γ some parameter to set.

For new datum x, decision based on (sign of)

$$g(x) = \alpha^{\mathsf{T}} K(\cdot, x) + b$$

where $\alpha \in \mathbb{R}^n$ and b are solution to

$$\begin{bmatrix} 0 & \mathbf{1}_n^\mathsf{T} \\ \mathbf{1}_n & K + \frac{n}{\gamma} I_n \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

with $y = [y_i]_{i=1}^n$, γ some parameter to set.

Objectives:

▶ Study behavior of *g*(*x*)

For new datum x, decision based on (sign of)

$$g(x) = \alpha^\mathsf{T} K(\cdot, x) + b$$

where $\alpha \in \mathbb{R}^n$ and b are solution to

$$\begin{bmatrix} 0 & \mathbf{1}_n^\mathsf{T} \\ \mathbf{1}_n & K + \frac{n}{\gamma} I_n \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

with $y = [y_i]_{i=1}^n$, γ some parameter to set.

Objectives:

- ▶ Study behavior of *g*(*x*)
- For $x \in C_a$, determine probability of success.

For new datum x, decision based on (sign of)

$$g(x) = \alpha^\mathsf{T} K(\cdot, x) + b$$

where $\alpha \in \mathbb{R}^n$ and b are solution to

$$\begin{bmatrix} 0 & \mathbf{1}_n^\mathsf{T} \\ \mathbf{1}_n & K + \frac{n}{\gamma} I_n \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

with $y = [y_i]_{i=1}^n$, γ some parameter to set.

Objectives:

- ▶ Study behavior of *g*(*x*)
- For $x \in C_a$, determine probability of success.
- Optimize the parameter γ and the kernel K.

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$, with identical growth conditions, here for k = 2.

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \dots, k$, with identical growth conditions, here for k = 2.

Results: As $n, p \to \infty$, in the first order

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \dots, k$, with identical growth conditions, here for k = 2.

Results: As $n, p \to \infty$, in the first order

• G(x) proportional to γ

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$, with identical growth conditions, here for k=2.

Results: As $n, p \to \infty$,

in the first order

Relevant terms here!

• G(x) proportional to γ

 \triangleright G(x) asymptotically Gaussian with in particular

$$\begin{split} E[G(x)] &\to \begin{cases} -c_1 M &, \ x \in \mathcal{C}_1 \\ c_2 M &, \ x \in \mathcal{C}_2 \end{cases} \\ M &= \frac{2c_1 c_2}{\gamma} \left[-2f'(\tau) \|\mu_2 - \mu_1\|^2 + f''(\tau)(t_2 - t_1)^2 + \frac{4f''(\tau)}{p} \operatorname{tr} \left(C_1 - C_2\right)^2 \right] \end{split}$$

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \dots, k$, with identical growth conditions, here for k = 2.

Results: As $n, p \to \infty$,

in the first order

Relevant terms here!

- G(x) proportional to γ
- G(x) asymptotically Gaussian with in particular

$$E[G(x)] \to \begin{cases} -c_1 M & , \ x \in \mathcal{C}_1 \\ c_2 M & , \ x \in \mathcal{C}_2 \end{cases}$$
$$M = \frac{2c_1 c_2}{\gamma} \left[-2f'(\tau) \|\mu_2 - \mu_1\|^2 + f''(\tau)(t_2 - t_1)^2 + \frac{4f''(\tau)}{p} \operatorname{tr} (C_1 - C_2)^2 \right]$$

Consequences:

Strong class-size bias

 \Rightarrow Proper threshold must depend on $n_2 - n_1$.

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \dots, k$, with identical growth conditions, here for k = 2.

Results: As $n, p \to \infty$,

in the first order

Relevant terms here!

- G(x) proportional to γ
- G(x) asymptotically Gaussian with in particular

$$E[G(x)] \to \begin{cases} -c_1 M & , \ x \in \mathcal{C}_1 \\ c_2 M & , \ x \in \mathcal{C}_2 \end{cases}$$
$$M = \frac{2c_1 c_2}{\gamma} \left[-2f'(\tau) \|\mu_2 - \mu_1\|^2 + f''(\tau)(t_2 - t_1)^2 + \frac{4f''(\tau)}{p} \operatorname{tr} (C_1 - C_2)^2 \right]$$

Consequences:

Strong class-size bias

 \Rightarrow Proper threshold must depend on $n_2 - n_1$.

- ▶ Natural cancellation of $O(n^{-\frac{1}{2}})$ terms. ⇒ Similar effect as observed in (properly normalized) kernel spectral clustering.
- Choice of γ asymptotically irrelevant.

As before, $x_i \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \dots, k$, with identical growth conditions, here for k = 2.

Results: As $n, p \to \infty$,

in the first order

Relevant terms here!

- G(x) proportional to γ
- G(x) asymptotically Gaussian with in particular

$$E[G(x)] \to \begin{cases} -c_1 M & , \ x \in C_1 \\ c_2 M & , \ x \in C_2 \end{cases}$$
$$M = \frac{2c_1 c_2}{\gamma} \left[-2f'(\tau) \|\mu_2 - \mu_1\|^2 + f''(\tau)(t_2 - t_1)^2 + \frac{4f''(\tau)}{p} \operatorname{tr} (C_1 - C_2)^2 \right]$$

Consequences:

Strong class-size bias

 \Rightarrow Proper threshold must depend on $n_2 - n_1$.

- ▶ Natural cancellation of $O(n^{-\frac{1}{2}})$ terms. ⇒ Similar effect as observed in (properly normalized) kernel spectral clustering.
- Choice of γ asymptotically irrelevant.
- ▶ Need to choose $f'(\tau) < 0$ and $f''(\tau) > 0$ (not the case for clustering or SSL!)

Theory and simulations of g(x)

Figure: Values of g(x) for Gaussian x_i 's (different means and covariances) versus limiting theoretical distribution, n = 512, p = 1024.

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Objective is to study performance of neural networks:

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep
 - recurrent or not (dynamic systems, stability considerations)

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep
 - recurrent or not (dynamic systems, stability considerations)
 - back-propagated or not (LS regression versus gradient descent approaches)

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep
 - recurrent or not (dynamic systems, stability considerations)
 - back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep
 - recurrent or not (dynamic systems, stability considerations)
 - back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks
 - Extreme learning machines: single layer, randomly connected input, LS regressed output.
General plan for the study of neural networks:

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep
 - recurrent or not (dynamic systems, stability considerations)
 - back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks
 - Extreme learning machines: single layer, randomly connected input, LS regressed output.
 - Echo-state networks: single interconnected layer, randomly connected input, LS regressed output.

General plan for the study of neural networks:

- Objective is to study performance of neural networks:
 - linear or not (linear is easy but not interesting, non-linear is hard)
 - from shallow to deep
 - recurrent or not (dynamic systems, stability considerations)
 - back-propagated or not (LS regression versus gradient descent approaches)
- Starting point: simple networks
 - Extreme learning machines: single layer, randomly connected input, LS regressed output.
 - Echo-state networks: single interconnected layer, randomly connected input, LS regressed output.
 - Deeper structures: back-propagation of error.

Context: for a learning period T

- input vectors $x_1, \ldots, x_T \in \mathbb{R}^p$, output scalars (or binary values) $r_1, \ldots, r_T \in \mathbb{R}$
- *n*-neuron layer, randomly connected input $W \in \mathbb{R}^{n \times p}$
- ridge-regressed output $\omega \in \mathbb{R}^n$
- non-linear activation function σ .

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

► Training MSE:

$$E_{\gamma}(X,r) = \frac{1}{T} \|r - \omega^{\mathsf{T}} \Sigma\|^2$$

with

$$\Sigma = [\sigma(Wx_1), \dots, \sigma(Wx_T)]$$
$$\omega = \frac{1}{T} \Sigma \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_T\right)^{-1} r.$$

Objectives: evaluate training and testing MSE performance as $n,p,T \rightarrow \infty$

► Training MSE:

$$E_{\gamma}(X,r) = \frac{1}{T} \|r - \omega^{\mathsf{T}} \Sigma\|^2$$

with

$$\Sigma = [\sigma(Wx_1), \dots, \sigma(Wx_T)]$$
$$\omega = \frac{1}{T} \Sigma \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_T\right)^{-1} r.$$

• Testing MSE: upon new pair (\hat{x}, \hat{r}) ,

$$\hat{E}_{\gamma}(X,r;\hat{x},\hat{r}) = \|\hat{r} - \omega^{\mathsf{T}}\sigma(W\hat{x})\|^{2}.$$

Objectives: evaluate training and testing MSE performance as $n, p, T \rightarrow \infty$

► Training MSE:

$$E_{\gamma}(X,r) = \frac{1}{T} \|r - \omega^{\mathsf{T}} \Sigma\|^2$$

with

$$\Sigma = [\sigma(Wx_1), \dots, \sigma(Wx_T)]$$
$$\omega = \frac{1}{T} \Sigma \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_T\right)^{-1} r.$$

• Testing MSE: upon new pair (\hat{x}, \hat{r}) ,

$$\hat{E}_{\gamma}(X,r;\hat{x},\hat{r}) = \|\hat{r} - \omega^{\mathsf{T}}\sigma(W\hat{x})\|^{2}.$$

• Optimize over γ .

Training MSE:

Training MSE given by

$$E_{\gamma}(X, r) = \gamma^{2} \frac{1}{T} r^{\mathsf{T}} \tilde{Q}_{\gamma}^{2} r$$
$$\tilde{Q}_{\gamma} = \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_{T}\right)^{-2}$$

Training MSE:

Training MSE given by

$$\begin{split} E_{\gamma}(X,r) &= \gamma^2 \frac{1}{T} r^{\mathsf{T}} \tilde{Q}_{\gamma}^2 r \\ \tilde{Q}_{\gamma} &= \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_T \right)^{-2}. \end{split}$$

► Testing MSE given by

$$\hat{E}_{\gamma}(X,r;\hat{x},\hat{r}) = \left|\hat{r} - \frac{1}{T}\sigma(W\hat{x})^{\mathsf{T}}\Sigma\tilde{Q}_{\gamma}r\right|^{2}$$

Training MSE:

Training MSE given by

$$E_{\gamma}(X,r) = \gamma^{2} \frac{1}{T} r^{\mathsf{T}} \tilde{Q}_{\gamma}^{2} r$$
$$\tilde{Q}_{\gamma} = \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_{T}\right)^{-2} .$$

Testing MSE given by

$$\hat{E}_{\gamma}(X,r;\hat{x},\hat{r}) = \left|\hat{r} - \frac{1}{T}\sigma(W\hat{x})^{\mathsf{T}}\Sigma\tilde{Q}_{\gamma}r\right|^{2}$$

• Requires first a deterministic equivalent $\overline{\tilde{Q}}_{\gamma}$ for \tilde{Q}_{γ} with non-linear $\sigma(\cdot)$.

Training MSE:

Training MSE given by

$$E_{\gamma}(X,r) = \gamma^{2} \frac{1}{T} r^{\mathsf{T}} \tilde{Q}_{\gamma}^{2} r$$
$$\tilde{Q}_{\gamma} = \left(\frac{1}{T} \Sigma^{\mathsf{T}} \Sigma + \gamma I_{T}\right)^{-2}$$

Testing MSE given by

$$\hat{E}_{\gamma}(X,r;\hat{x},\hat{r}) = \left|\hat{r} - \frac{1}{T}\sigma(W\hat{x})^{\mathsf{T}}\Sigma\tilde{Q}_{\gamma}r\right|^{2}$$

- Requires first a deterministic equivalent $\overline{\tilde{Q}}_{\gamma}$ for \widetilde{Q}_{γ} with non-linear $\sigma(\cdot)$.
- Then deterministic approximation of $\frac{1}{T}\sigma(Wa)^{\mathsf{T}}\Sigma\tilde{Q}_{\gamma}b$ for deterministic vectors a, b.

Bai-Silverstein approach:

• Assume $\overline{\tilde{Q}}_{\gamma} = (F + \gamma I_T)^{-1}$ for some deterministic F.

Bai-Silverstein approach:

• Assume
$$\tilde{Q}_{\gamma} = (F + \gamma I_T)^{-1}$$
 for some deterministic F .

▶ For A deterministic, we manipulate $\frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} - \frac{1}{T} \operatorname{tr} A \tilde{\bar{Q}}_{\gamma}$, to obtain

$$\begin{split} \frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} &- \frac{1}{T} \operatorname{tr} A \bar{\tilde{Q}}_{\gamma} = \frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} \left(F - \frac{1}{T} \Sigma^{\mathsf{T}} \Sigma \right) \bar{\tilde{Q}}_{\gamma} \\ &= \frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{1}{T} \Sigma_{i,\cdot} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma} \Sigma_{i,\cdot}^{\mathsf{T}} \\ &= \frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{\frac{1}{T} \Sigma_{i,\cdot} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma,-i} \Sigma_{i,\cdot}^{\mathsf{T}}}{1 + \frac{1}{T} \Sigma_{i,\cdot} \tilde{Q}_{\gamma,-i} \Sigma_{i,\cdot}^{\mathsf{T}}} \end{split}$$

where $\tilde{Q}_{\gamma,-i} = (\frac{1}{T}\Sigma^T\Sigma - \frac{1}{T}\Sigma^T_{i,\cdot}\Sigma_{i,\cdot} + \gamma I_T)^{-1}$.

Bai-Silverstein approach:

- Assume $\overline{\tilde{Q}}_{\gamma} = (F + \gamma I_T)^{-1}$ for some deterministic F.
- ► For A deterministic, we manipulate $\frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} \frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma}$, to obtain

$$\begin{split} \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} &- \frac{1}{T} \mathrm{tr} \, A \bar{\tilde{Q}}_{\gamma} = \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} \left(F - \frac{1}{T} \Sigma^{\mathsf{T}} \Sigma \right) \bar{\tilde{Q}}_{\gamma} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{1}{T} \Sigma_{i,.} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma} \Sigma_{i,.}^{\mathsf{T}} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{\frac{1}{T} \Sigma_{i,.} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma,-i} \Sigma_{i,.}^{\mathsf{T}} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{\frac{1}{T} \Sigma_{i,.} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma,-i} \Sigma_{i,.}^{\mathsf{T}} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{1}{T} \Sigma_{i,.} \bar{\tilde{Q}}_{\gamma,-i} \Sigma_{i,.}^{\mathsf{T}} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma,-i} \Sigma_{i,-i} \tilde{Q}_{\gamma,-i} \tilde{Q}_{\gamma,-i} \Sigma_{i,-i} \tilde{Q}_{\gamma,-i} \tilde{Q}_{\gamma,-i} \Sigma_{i,-i} \tilde{Q}_{\gamma,-i} \Sigma_{i,-i} \tilde{Q}_{\gamma,-i} \Sigma_{i$$

where $\tilde{Q}_{\gamma,-i} = (\frac{1}{T}\Sigma^T\Sigma - \frac{1}{T}\Sigma^T_{i,\cdot}\Sigma_{i,\cdot} + \gamma I_T)^{-1}$. • Here $\Sigma_{i,\cdot} = \sigma(W_{i,\cdot}X)$ independent of $\tilde{Q}_{\gamma,-i}$

Bai-Silverstein approach:

- Assume $\overline{\tilde{Q}}_{\gamma} = (F + \gamma I_T)^{-1}$ for some deterministic F.
- ► For A deterministic, we manipulate $\frac{1}{T} \operatorname{tr} A \tilde{Q}_{\gamma} \frac{1}{T} \operatorname{tr} A \tilde{\bar{Q}}_{\gamma}$, to obtain

$$\begin{split} \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} &- \frac{1}{T} \mathrm{tr} \, A \bar{\tilde{Q}}_{\gamma} = \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} \left(F - \frac{1}{T} \Sigma^{\mathsf{T}} \Sigma \right) \bar{\tilde{Q}}_{\gamma} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{1}{T} \Sigma_{i,\cdot} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma} \Sigma_{i,\cdot}^{\mathsf{T}} \\ &= \frac{1}{T} \mathrm{tr} \, A \tilde{Q}_{\gamma} F \bar{\tilde{Q}}_{\gamma} - \frac{1}{T} \sum_{i=1}^{n} \frac{\frac{1}{T} \Sigma_{i,\cdot} \bar{\tilde{Q}}_{\gamma} A \tilde{Q}_{\gamma,-i} \Sigma_{i,\cdot}^{\mathsf{T}}}{1 + \frac{1}{T} \Sigma_{i,\cdot} \tilde{Q}_{\gamma,-i} \Sigma_{i,\cdot}^{\mathsf{T}}} \end{split}$$

where $\tilde{Q}_{\gamma,-i} = (\frac{1}{T}\Sigma^T \Sigma - \frac{1}{T}\Sigma^T_{i,\cdot}\Sigma_{i,\cdot} + \gamma I_T)^{-1}.$

• Here $\Sigma_{i,\cdot} = \sigma(W_{i,\cdot}X)$ independent of $\tilde{Q}_{\gamma,-i}$

 \rightarrow reasoning broken on co-resolvent! (lucky that we need \tilde{Q}_{γ} and not Q_{γ})

(Conjectured) updated trace lemma:

Lemma

For A deterministic and $\sigma(t)$ polynomial, W_{ij} i.i.d. $E[W_{ij}] = 0$, $E[W_{ij}^k] = \frac{m_k}{n^{k/2}}$,

$$\frac{1}{T} \Sigma_{i,\cdot} A \Sigma_{i,\cdot}^{\mathsf{T}} - \frac{1}{T} \operatorname{tr} \Phi_X A \xrightarrow{\mathrm{a.s.}} 0$$

with

$$\Phi_X = E\left[\frac{1}{n}\sigma(WX)^{\mathsf{T}}\sigma(WX)\right].$$

(Conjectured) updated trace lemma:

Lemma

For A deterministic and $\sigma(t)$ polynomial, W_{ij} i.i.d. $E[W_{ij}] = 0$, $E[W_{ij}^k] = \frac{m_k}{n^{k/2}}$,

$$\frac{1}{T} \Sigma_{i,\cdot} A \Sigma_{i,\cdot}^{\mathsf{T}} - \frac{1}{T} \operatorname{tr} \Phi_X A \xrightarrow{\mathrm{a.s.}} 0$$

with

$$\Phi_X = E\left[\frac{1}{n}\sigma(WX)^{\mathsf{T}}\sigma(WX)\right].$$

For instance,

• for $\sigma(t) = t$,

$$\Phi_X = \frac{m_2}{n} X^\mathsf{T} X.$$

• for
$$\sigma(t) = t^2$$
,

$$\Phi_X = \frac{m_2^2}{n^2} \left(\sigma(X^{\mathsf{T}}X) + 2\sigma(X)^{\mathsf{T}} \mathbf{1}_p \mathbf{1}_p^{\mathsf{T}} \sigma(X) \right) + \frac{m_4 - 3m_2^2}{n^2} \sigma(X)^{\mathsf{T}} \sigma(X).$$

Early Results:

▶ (Conjectured) deterministic equivalent: as $n, p, T \to \infty$ with $\sigma(t)$ polynomial, W_{ij} i.i.d. $E[W_{ij}] = 0$, $E[W_{ij}^k] = \frac{m_k}{n^{k/2}}$,

$$\tilde{Q}_{\gamma} \leftrightarrow \bar{\tilde{Q}}_{\gamma}$$

where

$$\bar{\tilde{Q}}_{\gamma} = \left(\frac{n}{T}\frac{1}{1+\delta}\Phi_X + \gamma I_T\right)^{-1}$$
$$\delta = \frac{1}{T}\operatorname{tr}\Phi_X\left(\frac{n}{T}\frac{1}{1+\delta}\Phi_X + \gamma I_T\right)^{-1}$$

Early Results:

► (Conjectured) deterministic equivalent: as $n, p, T \to \infty$ with $\sigma(t)$ polynomial, W_{ij} i.i.d. $E[W_{ij}] = 0$, $E[W_{ij}^k] = \frac{m_k}{\pi^{k/2}}$,

$$\tilde{Q}_{\gamma} \leftrightarrow \bar{\tilde{Q}}_{\gamma}$$

where

$$\bar{\bar{Q}}_{\gamma} = \left(\frac{n}{T}\frac{1}{1+\delta}\Phi_{X} + \gamma I_{T}\right)^{-1}$$
$$\delta = \frac{1}{T}\operatorname{tr}\Phi_{X}\left(\frac{n}{T}\frac{1}{1+\delta}\Phi_{X} + \gamma I_{T}\right)^{-1}$$

We also denote

$$\delta' = (1+\delta) \frac{\frac{1}{T} \operatorname{tr} \Phi_X \bar{\tilde{Q}}_{\gamma}^2}{1 + \gamma \frac{1}{T} \operatorname{tr} \Phi_X \bar{\tilde{Q}}_{\gamma}^2}.$$

Early Results:

Training performance:

$$E_{\alpha}(X,r) \leftrightarrow \gamma^{2} \frac{1}{T} r^{\mathsf{T}} \bar{\tilde{Q}}_{\gamma} \left[\frac{n}{T} \frac{\delta'}{(1+\delta)^{2}} \Phi_{X} + I_{T} \right] \bar{\tilde{Q}}_{\gamma} r.$$

Early Results:

Training performance:

$$E_{\alpha}(X,r) \leftrightarrow \gamma^{2} \frac{1}{T} r^{\mathsf{T}} \bar{\tilde{Q}}_{\gamma} \left[\frac{n}{T} \frac{\delta'}{(1+\delta)^{2}} \Phi_{X} + I_{T} \right] \bar{\tilde{Q}}_{\gamma} r.$$

Testing performance:

$$\hat{E}_{\alpha}(X,r;\hat{x},\hat{r}) \leftrightarrow \left| \hat{r} - \frac{n}{T} \frac{1}{1+\delta} \Phi_{X,\hat{x}}^{\mathsf{T}} \bar{\tilde{Q}}_{\gamma} r \right|^2$$

with

$$\Phi_{X,\hat{x}} = E\left[\frac{1}{n}\sigma(WX)^{\mathsf{T}}\sigma(W\hat{x})\right].$$

In particular, for $\sigma(t) = t$, $\Phi_{X,\hat{x}} = \frac{m_2}{n} X^\mathsf{T} \hat{x}$, and, for $\sigma(t) = t^2$, $\Phi_{X,\hat{x}} = \frac{m_2^2}{n^2} \left(\sigma(X^\mathsf{T} \hat{x}) + 2\sigma(X)^\mathsf{T} \mathbf{1}_p \mathbf{1}_p^\mathsf{T} \sigma(\hat{x}) \right) + \frac{m_4 - 3m_2^2}{n^2} \sigma(X)^\mathsf{T} \sigma(\hat{x}).$

Test on MNIST data

Figure: MSE Train and Test Performance for $\sigma(t) = t$ and $\sigma(t) = t^2$, as a function of γ , for 2-class MNIST data (zeros, ones), n = 512, T = 512, p = 784.

Test on MNIST data

Figure: MSE Train and Test Performance for $\sigma(t) = t$ and $\sigma(t) = t^2$, as a function of γ , for 2-class MNIST data (zeros, ones), n = 512, T = 512, p = 784.

Interpretations and Improvements:

- General formulas for Φ_X , $\Phi_{X,\hat{x}}$
- On-line optimization of γ , $\sigma(\cdot)$, n?

Interpretations and Improvements:

- General formulas for Φ_X , $\Phi_{X,\hat{x}}$
- On-line optimization of γ , $\sigma(\cdot)$, n?

Generalizations:

- Multi-layer ELM?
- Optimize layers vs. number of neurons?
- Connection to auto-encoders?
- Introduction of non-linearity to more involved structures (ESN, deep nets?).

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Problem Statement

Echo-state Neural Networks (ESN)

Neural Net with n nodes, states $x_t \in \mathbb{R}^n$, defined recursively through

$$x_{t+1} = \sigma \left(Wx_t + mu_{t+1} + \eta \varepsilon_{t+1} \right)$$

where

- ▶ W fixed (often random) connectivity matrix
- *m* input to network connectivity (also fixed)
- ε_t in-network noise (ensures stability)

 \Rightarrow We take here $\sigma(x) = x$.

Training and Testing tasks

From input $u \in \mathbb{R}^T$ and expected output $r \in \mathbb{R}^T$,

• Given r, train the ESN by setting network to sink link

$$\omega = \begin{cases} (XX^{\mathsf{T}})^{-1}Xr & , \ T > n\\ X(X^{\mathsf{T}}X)^{-1}r & , \ T \le n \end{cases}$$

with $X = [x_1, \dots, x_T] \in \mathbb{R}^{n \times T}$ (so that $||r - X^\mathsf{T} \omega||$ minimized).

Training and Testing tasks

From input $u \in \mathbb{R}^T$ and expected output $r \in \mathbb{R}^T$,

• Given r, train the ESN by setting **network to sink link**

$$\omega = \begin{cases} (XX^{\mathsf{T}})^{-1}Xr & , \ T > n\\ X(X^{\mathsf{T}}X)^{-1}r & , \ T \le n \end{cases}$$

with $X = [x_1, \dots, x_T] \in \mathbb{R}^{n \times T}$ (so that $||r - X^{\mathsf{T}} \omega||$ minimized).

For unknown $\hat{r} \in \mathbb{R}^{\hat{T}}$ and input $\hat{u} \in \mathbb{R}^{\hat{T}}$, test the ESN by setting

$$\hat{y} = \hat{X}^{\mathsf{T}}\omega.$$

Training and Testing tasks

From input $u \in \mathbb{R}^T$ and expected output $r \in \mathbb{R}^T$,

• Given r, train the ESN by setting network to sink link

$$\omega = \begin{cases} (XX^{\mathsf{T}})^{-1}Xr &, T > n\\ X(X^{\mathsf{T}}X)^{-1}r &, T \le n \end{cases}$$

with $X = [x_1, \dots, x_T] \in \mathbb{R}^{n \times T}$ (so that $||r - X^{\mathsf{T}}\omega||$ minimized).

For unknown $\hat{r} \in \mathbb{R}^{\hat{T}}$ and input $\hat{u} \in \mathbb{R}^{\hat{T}}$, test the ESN by setting

$$\hat{y} = \hat{X}^{\mathsf{T}} \omega$$

Training Performance

$$E_{\eta}(u,r) \equiv \frac{1}{T} \left\| r - X^{\mathsf{T}} \omega \right\|^{2} = \lim_{\gamma \downarrow 0} \gamma \frac{1}{T} r^{\mathsf{T}} \tilde{Q}_{\gamma} r.$$

with $\tilde{Q}_{\gamma} \equiv (\frac{1}{T}X^{\mathsf{T}}X + \gamma I_T)^{-1}$, random matrix resolvent.

Training and Testing tasks

From input $u \in \mathbb{R}^T$ and expected output $r \in \mathbb{R}^T$,

• Given r, train the ESN by setting network to sink link

$$\omega = \begin{cases} (XX^{\mathsf{T}})^{-1}Xr &, T > n\\ X(X^{\mathsf{T}}X)^{-1}r &, T \le n \end{cases}$$

with $X = [x_1, \dots, x_T] \in \mathbb{R}^{n \times T}$ (so that $||r - X^{\mathsf{T}}\omega||$ minimized).

For unknown $\hat{r} \in \mathbb{R}^{\hat{T}}$ and input $\hat{u} \in \mathbb{R}^{\hat{T}}$, test the ESN by setting

$$\hat{y} = \hat{X}^{\mathsf{T}} \omega$$

Training Performance

$$E_{\eta}(u,r) \equiv \frac{1}{T} \left\| r - X^{\mathsf{T}} \omega \right\|^{2} = \lim_{\gamma \downarrow 0} \gamma \frac{1}{T} r^{\mathsf{T}} \tilde{Q}_{\gamma} r.$$

with $\tilde{Q}_{\gamma} \equiv (\frac{1}{T}X^{\mathsf{T}}X + \gamma I_T)^{-1}$, random matrix resolvent.

Testing Performance

$$\begin{aligned} \hat{E}_{\eta}(u,r;\hat{u},\hat{r}) &= \frac{1}{\hat{T}} \left\| \hat{r} - \hat{X}^{\mathsf{T}} \omega \right\|^2 \\ &= \lim_{\gamma \downarrow 0} \frac{1}{\hat{T}} \|\hat{r}\|^2 + \frac{1}{T^2 \hat{T}} r^{\mathsf{T}} \tilde{Q}_{\gamma} X^{\mathsf{T}} \hat{X} \hat{X}^{\mathsf{T}} X \tilde{Q}_{\gamma} r - \frac{2}{T \hat{T}} \hat{r}^{\mathsf{T}} \hat{X}^{\mathsf{T}} X \tilde{Q}_{\gamma} r \end{aligned}$$

Training Performance

Theorem (Training MSE for fixed W) As $n, T \to \infty$, $n/T \to c < 1$,

$$E_{\eta}(u,r) \leftrightarrow \frac{1}{T} r^{\mathsf{T}} \left(I_T + \mathcal{R} + \frac{1}{\eta^2} U^{\mathsf{T}} \left\{ m^{\mathsf{T}} (W^i)^{\mathsf{T}} \tilde{\mathcal{R}}^{-1} W^j m \right\}_{i,j=0}^{T-1} U \right)^{-1} r.$$

where $U_{ij} = u_{i-j}$ and \mathcal{R} , $\tilde{\mathcal{R}}$, solution to

$$\mathcal{R} = c \left\{ \frac{1}{n} \operatorname{tr} \left(S_{i-j} \tilde{\mathcal{R}}^{-1} \right) \right\}_{i,j=1}^{T}$$
$$\tilde{\mathcal{R}} = \sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr} \left(J^{q} (I_{T} + \mathcal{R})^{-1} \right) S_{q}$$

with $[J^q]_{ij} \equiv \delta_{i+q,j}$ and $S_q \equiv \sum_{k \ge 0} W^{k+(-q)^+} (W^{k+q^+})^{\mathsf{T}}$.

Training Performance

Theorem (Training MSE for fixed W) As $n, T \to \infty$, $n/T \to c < 1$,

$$E_{\eta}(u,r) \leftrightarrow \frac{1}{T} r^{\mathsf{T}} \left(I_T + \mathcal{R} + \frac{1}{\eta^2} U^{\mathsf{T}} \left\{ m^{\mathsf{T}} (W^i)^{\mathsf{T}} \tilde{\mathcal{R}}^{-1} W^j m \right\}_{i,j=0}^{T-1} U \right)^{-1} r.$$

where $U_{ij} = u_{i-j}$ and \mathcal{R} , $\tilde{\mathcal{R}}$, solution to

$$\mathcal{R} = c \left\{ \frac{1}{n} \operatorname{tr} \left(S_{i-j} \tilde{\mathcal{R}}^{-1} \right) \right\}_{i,j=1}^{T}$$
$$\tilde{\mathcal{R}} = \sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr} \left(J^{q} (I_{T} + \mathcal{R})^{-1} \right) S_{q}$$

with $[J^q]_{ij} \equiv \delta_{i+q,j}$ and $S_q \equiv \sum_{k \ge 0} W^{k+(-q)^+} (W^{k+q^+})^{\mathsf{T}}$.

 \longrightarrow When c = 0,

$$E_{\eta}(u,r) \leftrightarrow \frac{1}{T} r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}} U^{\mathsf{T}} \left\{ m^{\mathsf{T}} (W^{i})^{\mathsf{T}} S_{0}^{-1} W^{j} m \right\}_{i,j=0}^{T-1} U \right)^{-1} r.$$

• Note that columns of U are delayed versions of u_t .

Testing Performance

Theorem (Testing MSE for fixed W) As $n, T \rightarrow \infty$, $n/T \rightarrow c < 1$,

$$\hat{E}_{\eta}(u,r;\hat{u},\hat{r}) \leftrightarrow \left\| \frac{1}{\eta^{2}\sqrt{T}} \hat{A}^{\mathsf{T}} \mathcal{Q} A(\boldsymbol{\delta}_{c<1} I_{T} + \mathcal{R})^{-1} r - \frac{1}{\sqrt{\hat{T}}} \hat{r} \right\|^{2} + \frac{1}{T} r^{\mathsf{T}} \tilde{\mathcal{Q}} \mathcal{G} \tilde{\mathcal{Q}} r + \frac{1}{\eta^{2} T} r^{\mathsf{T}} (\boldsymbol{\delta}_{c<1} I_{T} + \mathcal{R})^{-1} A^{\mathsf{T}} \mathcal{Q} \left[S_{0} + \tilde{\mathcal{G}} \right] \mathcal{Q} A(\boldsymbol{\delta}_{c<1} I_{T} + \mathcal{R})^{-1} r$$

where A=MU , $\hat{A}=\hat{M}\hat{U}$, $M=[m,Wm,\ldots,W^{T-1}m]$, and \mathcal{G} , $\tilde{\mathcal{G}}$, solution to

$$\mathcal{G} = c \left\{ \frac{1}{n} \operatorname{tr} \left(S_{i-j} \tilde{\mathcal{R}}^{-1} \left[S_0 + \tilde{\mathcal{G}} \right] \tilde{\mathcal{R}}^{-1} \right) \right\}_{i,j=1}^T$$
$$\tilde{\mathcal{G}} = \sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr} \left(J^q (I_T + \mathcal{R})^{-1} \mathcal{G} (I_T + \mathcal{R})^{-1} \right) S_q$$

Testing Performance

Theorem (Testing MSE for fixed W) As $n, T \rightarrow \infty$, $n/T \rightarrow c < 1$,

$$\hat{E}_{\eta}(u,r;\hat{u},\hat{r}) \leftrightarrow \left\| \frac{1}{\eta^{2}\sqrt{T}} \hat{A}^{\mathsf{T}} \mathcal{Q} A(\boldsymbol{\delta}_{c<1} I_{T} + \mathcal{R})^{-1} r - \frac{1}{\sqrt{\hat{T}}} \hat{r} \right\|^{2} + \frac{1}{T} r^{\mathsf{T}} \tilde{\mathcal{Q}} \mathcal{G} \tilde{\mathcal{Q}} r + \frac{1}{\eta^{2} T} r^{\mathsf{T}} (\boldsymbol{\delta}_{c<1} I_{T} + \mathcal{R})^{-1} A^{\mathsf{T}} \mathcal{Q} \left[S_{0} + \tilde{\mathcal{G}} \right] \mathcal{Q} A(\boldsymbol{\delta}_{c<1} I_{T} + \mathcal{R})^{-1} r$$

where A=MU , $\hat{A}=\hat{M}\hat{U}$, $M=[m,Wm,\ldots,W^{T-1}m]$, and \mathcal{G} , $\tilde{\mathcal{G}}$, solution to

$$\mathcal{G} = c \left\{ \frac{1}{n} \operatorname{tr} \left(S_{i-j} \tilde{\mathcal{R}}^{-1} \left[S_0 + \tilde{\mathcal{G}} \right] \tilde{\mathcal{R}}^{-1} \right) \right\}_{i,j=1}^T$$
$$\tilde{\mathcal{G}} = \sum_{q=-\infty}^{\infty} \frac{1}{T} \operatorname{tr} \left(J^q (I_T + \mathcal{R})^{-1} \mathcal{G} (I_T + \mathcal{R})^{-1} \right) S_q.$$

94 / 113

ESN Performance for Random Haar ${\cal W}$

• Letting $W = \sigma Z$ with Z orthogonal and orthogonally invariant,

$$E_{\eta}(u,r) \leftrightarrow (1-c)\frac{1}{T}r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}}U^{\mathsf{T}}DU\right)^{-1}r$$
$$\hat{E}_{\eta}(u,r;\hat{u},\hat{r}) \leftrightarrow \left\|\frac{1}{\eta^{2}\sqrt{T}}\hat{U}^{\mathsf{T}}\hat{D}U\left(I_{T} + \frac{1}{\eta^{2}}U^{\mathsf{T}}DU\right)^{-1}r - \frac{1}{\sqrt{T}}\hat{r}^{\mathsf{T}}\right\|^{2}$$
$$+ \frac{1}{1-c}\frac{1}{T}r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}}U^{\mathsf{T}}DU\right)^{-1}r - \frac{1}{T}r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}}U^{\mathsf{T}}DU\right)^{-2}r$$

where

$$\begin{split} D &\equiv \left\{ m^{\mathsf{T}} (W^{i})^{\mathsf{T}} S_{0}^{-1} W^{j} m \right\}_{i,j=0}^{T-1} \\ \hat{D} &\equiv \left\{ m^{\mathsf{T}} (W^{i})^{\mathsf{T}} S_{0}^{-1} W^{j} m \right\}_{i,j=0}^{\hat{T}-1,T-1} \end{split}$$
ESN Performance for Random Haar ${\cal W}$

• Letting $W = \sigma Z$ with Z orthogonal and orthogonally invariant,

$$E_{\eta}(u,r) \leftrightarrow (1-c) \frac{1}{T} r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}} U^{\mathsf{T}} D U \right)^{-1} r$$
$$\hat{E}_{\eta}(u,r;\hat{u},\hat{r}) \leftrightarrow \left\| \frac{1}{\eta^{2} \sqrt{T}} \hat{U}^{\mathsf{T}} \hat{D} U \left(I_{T} + \frac{1}{\eta^{2}} U^{\mathsf{T}} D U \right)^{-1} r - \frac{1}{\sqrt{T}} \hat{r} \right\|^{2}$$
$$+ \frac{1}{1-c} \frac{1}{T} r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}} U^{\mathsf{T}} D U \right)^{-1} r - \frac{1}{T} r^{\mathsf{T}} \left(I_{T} + \frac{1}{\eta^{2}} U^{\mathsf{T}} D U \right)^{-2} r$$

where

$$D \equiv \left\{ m^{\mathsf{T}} (W^{i})^{\mathsf{T}} S_{0}^{-1} W^{j} m \right\}_{i,j=0}^{T-1}$$
$$\hat{D} \equiv \left\{ m^{\mathsf{T}} (W^{i})^{\mathsf{T}} S_{0}^{-1} W^{j} m \right\}_{i,j=0}^{\hat{T}-1,T-1}$$

• If m independent of W, D diagonal,

$$D_{ii} \leftrightarrow (1 - \sigma^2) \sigma^{2(i-1)}.$$

Multimemory Connectivity

Analysis suggests taking $W = \text{diag}(W_1, \ldots, W_k)$, $W_j = \sigma_j Z_j$, $Z_j \in \mathbb{R}^{n_j \times n_j}$ Haar, so that

$$D_{ii} \leftrightarrow \frac{\sum_{j=1}^{k} c_j \sigma_j^{2(i-1)}}{\sum_{j=1}^{k} c_j (1 - \sigma_j^2)^{-1}}$$

Figure: Memory curve (MC) for $W = \operatorname{diag}(W_1, W_2, W_3)$, $W_j = \sigma_j Z_j$, $Z_j \in \mathbb{R}^{n_j \times n_j}$ Haar distributed, $\sigma_1 = .99$, $n_1/n = .01$, $\sigma_2 = .9$, $n_2/n = .1$, and $\sigma_3 = .5$, $n_3/n = .89$. The matrices W_i^+ are defined by $W_i^+ = \sigma_i Z_i^+$, with $Z_i^+ \in \mathbb{R}^{n \times n}$ Haar distributed.

Multimemory Connectivity

Figure: Mackey Glass one-step ahead task, W (multimemory) versus $W_1^+=.99Z_1^+$, $W_2^+=.9Z_2^+,\,W_3^+=.5Z_3^+,\,n=400,\,T=\hat{T}=800.$

Example: Mackey-Glass Model, random matrix convergence

Figure: Mackey Glass one-step ahead task, W multimemory, n = 200, $T = \hat{T} = 400$ (left) and n = 400, $T = \hat{T} = 800$ (right).

Robustness to outliers

Figure: Mackey-Glass one-step ahead task with 1% or 10% impulsive $\mathcal{N}(0,.01)$ noise pollution in test data inputs, W Haar with $\sigma = .9$, n = 400, $T = \hat{T} = 1000$.

Robustness to outliers

Figure: Realization of a 1% $\mathcal{N}(0,.01)\text{-noisy}$ Mackey-Glass sequence versus network output, W Haar with σ = .9, n = 400, T = \hat{T} = 1000.

Non-symmetric versus symmetric W

Figure: Training (left) and testing (right) performance of a τ -delay task for $\tau \in \{1, \ldots, 4\}$ for Haar versus Wigner W, $\sigma = .9$ and n = 200, $T = \hat{T} = 400$.

Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$:

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$: If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$: If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

• [Huber'67] If $x_1 \sim (1 - \varepsilon)\mathcal{N}(0, C_N) + \varepsilon G$, G unknown, robust estimator (n > N)

$$\hat{C}_{N} = \frac{1}{n} \sum_{i=1}^{n} \max\left\{\ell_{1}, \frac{\ell_{2}}{\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}}\right\} x_{i} x_{i}^{*} \text{ for some } \ell_{1}, \ell_{2} > 0.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$: If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*.$$

• [Huber'67] If $x_1 \sim (1 - \varepsilon)\mathcal{N}(0, C_N) + \varepsilon G$, G unknown, robust estimator (n > N)

$$\hat{C}_{N} = \frac{1}{n} \sum_{i=1}^{n} \max\left\{\ell_{1}, \frac{\ell_{2}}{\frac{1}{N} x_{i}^{*} \hat{C}_{N}^{-1} x_{i}}\right\} x_{i} x_{i}^{*} \text{ for some } \ell_{1}, \ell_{2} > 0.$$

• [Maronna'76] If x_1 elliptical (and n > N), ML estimator for C_N given by

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^* \text{ for some non-increasing } u.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{C}^N$ (or \mathbb{R}^N) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^*] = C_N$: If $x_1 \sim \mathcal{N}(0, C_N)$, ML estimator for C_N is sample covariance matrix (SCM)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

• [Huber'67] If $x_1 \sim (1 - \varepsilon)\mathcal{N}(0, C_N) + \varepsilon G$, G unknown, robust estimator (n > N)

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n \max\left\{\ell_1, \frac{\ell_2}{\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i}\right\} x_i x_i^* \text{ for some } \ell_1, \ell_2 > 0.$$

• [Maronna'76] If x_1 elliptical (and n > N), ML estimator for C_N given by

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^* \text{ for some non-increasing } u.$$

• [Pascal'13; Chen'11] If N > n, x_1 elliptical or with outliers, shrinkage extensions

$$\hat{C}_{N}(\rho) = (1-\rho)\frac{1}{n}\sum_{i=1}^{n}\frac{x_{i}x_{i}^{*}}{\frac{1}{N}x_{i}^{*}\hat{C}_{N}^{-1}(\rho)x_{i}} + \rho I_{N}$$
$$\check{C}_{N}(\rho) = \frac{\check{B}_{N}(\rho)}{\frac{1}{N}\operatorname{tr}\check{B}_{N}(\rho)}, \ \check{B}_{N}(\rho) = (1-\rho)\frac{1}{n}\sum_{i=1}^{n}\frac{x_{i}x_{i}^{*}}{\frac{1}{N}x_{i}^{*}\check{C}_{N}^{-1}(\rho)x_{i}} + \rho I_{N}$$

Results only known for N fixed and $n \to \infty$:

not appropriate in settings of interest today (BigData, array processing, MIMO)

Results only known for N fixed and $n \to \infty$:

not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such \hat{C}_N in the regime

$$N, n \to \infty, N/n \to c \in (0, \infty).$$

Results only known for N fixed and $n \to \infty$:

not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such \hat{C}_N in the regime

$$N, n \to \infty, N/n \to c \in (0, \infty).$$

- Math interest:
 - limiting eigenvalue distribution of \hat{C}_N
 - limiting values and fluctuations of functionals $f(\hat{C}_N)$

Results only known for N fixed and $n \to \infty$:

not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such \hat{C}_N in the regime

$$N, n \to \infty, \ N/n \to c \in (0, \infty).$$

Math interest:

- limiting eigenvalue distribution of C_N
- limiting values and fluctuations of functionals $f(\hat{C}_N)$
- Application interest:
 - comparison between SCM and robust estimators
 - performance of robust/non-robust estimation methods
 - improvement thereof (by proper parametrization)

Definition (Maronna's Estimator)

For $x_1,\ldots,x_n\in\mathbb{C}^N$ with n>N , \hat{C}_N is the solution (upon existence and uniqueness) of

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

Definition (Maronna's Estimator)

For $x_1,\ldots,x_n\in \mathbb{C}^N$ with n>N , \hat{C}_N is the solution (upon existence and uniqueness) of

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

where $u:[0,\infty)\to (0,\infty)$ is

- non-increasing
- ▶ such that $\phi(x) \triangleq xu(x)$ increasing of supremum ϕ_{∞} with

$$1 < \phi_{\infty} < c^{-1}, \ c \in (0,1).$$

Recent Theoretical Results

For various models of the x_i 's,

First order convergence:

$$\left\| \hat{C}_N - \hat{S}_N \right\| \xrightarrow{\text{a.s.}} 0$$

for some tractable random matrices \hat{S}_N .

Recent Theoretical Results

For various models of the x_i 's,

First order convergence:

$$\left\| \hat{C}_N - \hat{S}_N \right\| \xrightarrow{\text{a.s.}} 0$$

for some tractable random matrices \hat{S}_N .

Second order results:

$$N^{1-\varepsilon} \left(a^* \hat{C}_N^k b - a^* \hat{S}_N^k b \right) \xrightarrow{\text{a.s.}} 0$$

allowing transfer of CLT results.

Recent Theoretical Results

For various models of the x_i 's,

First order convergence:

$$\left\| \hat{C}_N - \hat{S}_N \right\| \xrightarrow{\text{a.s.}} 0$$

for some tractable random matrices \hat{S}_N .

Second order results:

$$N^{1-\varepsilon} \left(a^* \hat{C}_N^k b - a^* \hat{S}_N^k b \right) \xrightarrow{\text{a.s.}} 0$$

allowing transfer of CLT results.

Applications:

- improved robust covariance matrix estimation
- improved robust tests / estimators
- specific examples in statistics at large, array processing, statistical finance, etc.

Theorem (Large dimensional behavior, elliptical case) For $x_i = \sqrt{\tau_i} w_i$, τ_i impulsive (random or not), w_i unitarily invariant, $||w_i|| = N$,

$$\left\| \hat{C}_N - \hat{S}_N \right\| \xrightarrow{\text{a.s.}} 0$$

with, for some v related to u,

$$\hat{S}_N \triangleq \frac{1}{n} \sum_{i=1}^n v(\tau_i \gamma_N) x_i x_i^*$$

and γ_N unique solution of

$$1 = \frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v(\tau_i \gamma)}{1 + c \gamma v(\tau_i \gamma)}.$$

Theorem (Large dimensional behavior, elliptical case) For $x_i = \sqrt{\tau_i} w_i$, τ_i impulsive (random or not), w_i unitarily invariant, $||w_i|| = N$,

$$\left\| \hat{C}_N - \hat{S}_N \right\| \xrightarrow{\text{a.s.}} 0$$

with, for some v related to u,

$$\hat{S}_N \triangleq \frac{1}{n} \sum_{i=1}^n v(\tau_i \gamma_N) x_i x_i^*$$

and γ_N unique solution of

$$1 = \frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v(\tau_i \gamma)}{1 + c \gamma v(\tau_i \gamma)}.$$

Corollaries

• Spectral measure:
$$\mu_N^{\hat{C}_N} - \mu_N^{\hat{S}_N} \xrightarrow{\mathcal{L}} 0$$
 a.s. $(\mu_N^X \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(X)})$

Theorem (Large dimensional behavior, elliptical case) For $x_i = \sqrt{\tau_i} w_i$, τ_i impulsive (random or not), w_i unitarily invariant, $||w_i|| = N$,

$$\left\| \hat{C}_N - \hat{S}_N \right\| \stackrel{\text{a.s.}}{\longrightarrow} 0$$

with, for some v related to u,

$$\hat{S}_N \triangleq \frac{1}{n} \sum_{i=1}^n v(\tau_i \gamma_N) x_i x_i^*$$

and γ_N unique solution of

$$1 = \frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v(\tau_i \gamma)}{1 + c \gamma v(\tau_i \gamma)}.$$

Corollaries

- ► Spectral measure: $\mu_N^{\hat{C}_N} \mu_N^{\hat{S}_N} \xrightarrow{\mathcal{L}} 0$ a.s. $(\mu_N^X \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(X)})$
- ► Local convergence: $\max_{1 \le i \le N} |\lambda_i(\hat{C}_N) \lambda_i(\hat{S}_N)| \xrightarrow{\text{a.s.}} 0.$

Theorem (Large dimensional behavior, elliptical case) For $x_i = \sqrt{\tau_i} w_i$, τ_i impulsive (random or not), w_i unitarily invariant, $||w_i|| = N$,

$$\left\| \hat{C}_N - \hat{S}_N \right\| \stackrel{\text{a.s.}}{\longrightarrow} 0$$

with, for some v related to u,

$$\hat{S}_N \triangleq \frac{1}{n} \sum_{i=1}^n v(\tau_i \gamma_N) x_i x_i^*$$

and γ_N unique solution of

$$1 = \frac{1}{n} \sum_{j=1}^{n} \frac{\gamma v(\tau_i \gamma)}{1 + c \gamma v(\tau_i \gamma)}.$$

Corollaries

- ► Spectral measure: $\mu_N^{\hat{C}_N} \mu_N^{\hat{S}_N} \xrightarrow{\mathcal{L}} 0$ a.s. $(\mu_N^X \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(X)})$
- ► Local convergence: $\max_{1 \le i \le N} |\lambda_i(\hat{C}_N) \lambda_i(\hat{S}_N)| \xrightarrow{\text{a.s.}} 0.$
- Norm boundedness: $\limsup_N \|\hat{C}_N\| < \infty$

\rightarrow Bounded spectrum (unlike SCM!)

Large dimensional behavior

Figure: n = 2500, N = 500, $C_N = \text{diag}(I_{125}, 3I_{125}, 10I_{250})$, $\tau_i \sim \Gamma(.5, 2)$ i.i.d.

Large dimensional behavior

Figure: n = 2500, N = 500, $C_N = \text{diag}(I_{125}, 3I_{125}, 10I_{250})$, $\tau_i \sim \Gamma(.5, 2)$ i.i.d.

Large dimensional behavior

Figure: n = 2500, N = 500, $C_N = \text{diag}(I_{125}, 3I_{125}, 10I_{250})$, $\tau_i \sim \Gamma(.5, 2)$ i.i.d.

Theorem (Outlier Rejection)

Observation set

$$X = \left[x_1, \dots, x_{(1-\varepsilon_n)n}, a_1, \dots, a_{\varepsilon_n n}\right]$$

where $x_i \sim \mathcal{CN}(0, C_N)$ and $a_1, \ldots, a_{\varepsilon_n n} \in \mathbb{C}^N$ deterministic outliers. Then,

$$\left\|\hat{C}_N - \hat{S}_N\right\| \xrightarrow{\text{a.s.}} 0$$

where

$$\hat{S}_{N} \triangleq v\left(\gamma_{N}\right) \frac{1}{n} \sum_{i=1}^{(1-\varepsilon_{n})n} x_{i}x_{i}^{*} + \frac{1}{n} \sum_{i=1}^{\varepsilon_{n}n} v\left(\alpha_{i,n}\right) a_{i}a_{i}^{*}$$

with γ_N and $\alpha_{1,n}, \ldots, \alpha_{\varepsilon_n n, n}$ unique positive solutions to

$$\gamma_N = \frac{1}{N} \operatorname{tr} C_N \left(\frac{(1-\varepsilon)v(\gamma_N)}{1+cv(\gamma_N)\gamma_N} C_N + \frac{1}{n} \sum_{i=1}^{\varepsilon_n n} v\left(\alpha_{i,n}\right) a_i a_i^* \right)^{-1}$$
$$\alpha_{i,n} = \frac{1}{N} a_i^* \left(\frac{(1-\varepsilon)v(\gamma_N)}{1+cv(\gamma_N)\gamma_N} C_N + \frac{1}{n} \sum_{j\neq i}^{\varepsilon_n n} v\left(\alpha_{j,n}\right) a_j a_j^* \right)^{-1} a_i, \ i = 1, \dots, \varepsilon_n n$$

• For $\varepsilon_n n = 1$,

$$\hat{S}_N = v \left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{n-1} x_i x_i^* + \left(v \left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} a_1^* C_N^{-1} a_1\right) + o(1)\right) a_1 a_1^*$$

Outlier rejection relies on $\frac{1}{N}a_1^*C_N^{-1}a_1 \leqslant 1.$

• For $\varepsilon_n n = 1$,

$$\hat{S}_N = v \left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{n-1} x_i x_i^* + \left(v \left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} a_1^* C_N^{-1} a_1\right) + o(1)\right) a_1 a_1^*$$

Outlier rejection relies on $\frac{1}{N}a_1^*C_N^{-1}a_1 \leq 1$. For $a_i \sim \mathcal{CN}(0, D_N), \ \varepsilon_n \to \varepsilon \geq 0$,

$$\hat{S}_N = v\left(\gamma_n\right) \frac{1}{n} \sum_{i=1}^{(1-\varepsilon_n)n} x_i x_i^* + v\left(\alpha_n\right) \frac{1}{n} \sum_{i=1}^{\varepsilon_n n} a_i a_i^*$$
$$\gamma_n = \frac{1}{N} \operatorname{tr} C_N \left(\frac{(1-\varepsilon)v(\gamma_n)}{1+cv(\gamma_n)\gamma_n} C_N + \frac{\varepsilon v(\alpha_n)}{1+cv(\alpha_n)\alpha_n} D_N \right)^{-1}$$
$$\alpha_n = \frac{1}{N} \operatorname{tr} D_N \left(\frac{(1-\varepsilon)v(\gamma_n)}{1+cv(\gamma_n)\gamma_n} C_N + \frac{\varepsilon v(\alpha_n)}{1+cv(\alpha_n)\alpha_n} D_N \right)^{-1}$$

• For $\varepsilon_n n = 1$,

$$\hat{S}_N = v \left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{n-1} x_i x_i^* + \left(v \left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} a_1^* C_N^{-1} a_1\right) + o(1)\right) a_1 a_1^*$$

Outlier rejection relies on $\frac{1}{N}a_1^*C_N^{-1}a_1 \leq 1$. For $a_i \sim C\mathcal{N}(0, D_N)$, $\varepsilon_n \to \varepsilon \geq 0$,

$$\hat{S}_N = v\left(\gamma_n\right) \frac{1}{n} \sum_{i=1}^{(1-\varepsilon_n)n} x_i x_i^* + v\left(\alpha_n\right) \frac{1}{n} \sum_{i=1}^{\varepsilon_n n} a_i a_i^*$$
$$\gamma_n = \frac{1}{N} \operatorname{tr} C_N \left(\frac{(1-\varepsilon)v(\gamma_n)}{1+cv(\gamma_n)\gamma_n} C_N + \frac{\varepsilon v(\alpha_n)}{1+cv(\alpha_n)\alpha_n} D_N \right)^{-1}$$
$$\alpha_n = \frac{1}{N} \operatorname{tr} D_N \left(\frac{(1-\varepsilon)v(\gamma_n)}{1+cv(\gamma_n)\gamma_n} C_N + \frac{\varepsilon v(\alpha_n)}{1+cv(\alpha_n)\alpha_n} D_N \right)^{-1}$$

For $\varepsilon_n \to 0$,

$$\hat{S}_N = v \left(\frac{\phi^{-1}(1)}{1-c}\right) \frac{1}{n} \sum_{i=1}^{(1-\varepsilon_n)n} x_i x_i^* + \frac{1}{n} \sum_{i=1}^{\varepsilon_n n} v \left(\frac{\phi^{-1}(1)}{1-c} \frac{1}{N} \operatorname{tr} D_N C_N^{-1}\right) a_i a_i^*$$

Outlier rejection relies on $\frac{1}{N} \operatorname{tr} D_N C_N^{-1} \leq 1$.

Deterministic equivalent eigenvalue distribution

Figure: Limiting eigenvalue distributions. $[C_N]_{ij} = .9^{|i-j|}$, $D_N = I_N$, $\varepsilon = .05$.

Deterministic equivalent eigenvalue distribution

Figure: Limiting eigenvalue distributions. $[C_N]_{ij} = .9^{|i-j|}$, $D_N = I_N$, $\varepsilon = .05$.

Deterministic equivalent eigenvalue distribution

Figure: Limiting eigenvalue distributions. $[C_N]_{ij} = .9^{|i-j|}$, $D_N = I_N$, $\varepsilon = .05$.
Other Results and Perspectives

Short Term Objectives:

Robust statistics.

- Soint mean and covariance robust estimation
- Study of robust regression (preliminary works exist already using strikingly different approaches)

Robust statistics.

- Soint mean and covariance robust estimation
- Study of robust regression (preliminary works exist already using strikingly different approaches)

Kernel methods.

- ✓ Subspace spectral clustering (dramatically different case of $f'(\tau) = 0$)
- Spectral clustering with outer product kernel $f(x^{\mathsf{T}}y)$
- Semi-supervised learning, kernel approaches.
- Support vector machines (SVM).

Robust statistics.

- Soint mean and covariance robust estimation
- Study of robust regression (preliminary works exist already using strikingly different approaches)

Kernel methods.

- ✓ Subspace spectral clustering (dramatically different case of $f'(\tau) = 0$)
- Spectral clustering with outer product kernel $f(x^{\mathsf{T}}y)$
- Semi-supervised learning, kernel approaches.
- Support vector machines (SVM).

Community detection.

- Complete study of eigenvector contents in adjacency/mpdularity methods.
- Study of Bethe Hessian approach.
- Analysis of non-necessarily spectral approaches (wavelet approaches).

Robust statistics.

- Soint mean and covariance robust estimation
- Study of robust regression (preliminary works exist already using strikingly different approaches)

Kernel methods.

- ✓ Subspace spectral clustering (dramatically different case of $f'(\tau) = 0$)
- Spectral clustering with outer product kernel $f(x^{\mathsf{T}}y)$
- Semi-supervised learning, kernel approaches.
- Support vector machines (SVM).

Community detection.

- Complete study of eigenvector contents in adjacency/mpdularity methods.
- Study of Bethe Hessian approach.
- Analysis of non-necessarily spectral approaches (wavelet approaches).

Neural Networks.

- Analysis of non-linear extreme learning machines
- non-linear echo-state

Robust statistics.

- Soint mean and covariance robust estimation
- Study of robust regression (preliminary works exist already using strikingly different approaches)

Kernel methods.

- ✓ Subspace spectral clustering (dramatically different case of $f'(\tau) = 0$)
- Spectral clustering with outer product kernel $f(x^{\mathsf{T}}y)$
- Semi-supervised learning, kernel approaches.
- Support vector machines (SVM).

Community detection.

- Complete study of eigenvector contents in adjacency/mpdularity methods.
- Study of Bethe Hessian approach.
- Analysis of non-necessarily spectral approaches (wavelet approaches).

Neural Networks.

- Analysis of non-linear extreme learning machines
- non-linear echo-state

Signal processing on graphs, further graph inference, etc.

Waking graph methods random.

Thank you.