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Context and Taskforce

General theme:

Understand and improve machine learning methods in the large dimensional regime

4/113



Context and Taskforce

General theme:
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Basic Reminders on Random Matrix Theory
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Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:
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Context

Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:
> If 21 ~ N(0,Cn), ML estimator for Cpy is the sample covariance matrix (SCM)

1 n
o .
Cn = - Elxlxi.
i=

> If n — oo, then, strong law of large numbers

C",N a.s. CN
or equivalently, in spectral norm
ox - cx| 250,

Random Matrix Regime

» No longer valid if N,n — oo with N/n — ¢ € (0, 00),

fox -] 4o

» For practical N,n with N ~ n, leads to dramatically wrong conclusions
» Even for n = 100 x N.
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Setting: x; € CN iid., 21 ~CN(0,Iy)
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Setting: x; € CN iid., 21 ~CN(0,Iy)
» assume N = N(n) such that N/n — ¢ > 1

> then, joint point-wise convergence

1
=X X7 =8 25 0.
" ,

= max

max C’N —IN]
H 1<i,j<N
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The Large Dimensional Fallacies

Setting: x; € CN iid., 21 ~CN(0,Iy)
» assume N = N(n) such that N/n — ¢ > 1

> then, joint point-wise convergence

N 1 " a.s,
1<0gEN ‘ [CN - IN]ij =y | N e 0 0
> however, eigenvalue mismatch
0=X2(CN)=-.. = AN-n(CN) S AN-nt1(Cn) < ... < AN (CN)
T=MUN)=.. = AN_n(N) = AN_nt1(Cn) = ... = An(IN)

=> no convergence in spectral norm.
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The Maréenko—Pastur law
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Figure: Histogram of the eigenvalues of C’N for N = 500, n = 2000, Cny = InN.
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The Maréenko—Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) ux of Hermitian matrix Ay € CVX s

| N
UN = N;(SM(AN)‘
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Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) ux of Hermitian matrix Ay € CVX s

| N
UN = N;(SM(AN)‘

Theorem (Mar€enko—Pastur Law [Mar€enko,Pastur’67])

XN € CNX™ with i.i.d. zero mean, unit variance entries.
As N,n — oo with N/n — ¢ € (0,00), e.s.d. un of %XNX]’Q satisfies

KN £>ljlc

weakly, where
> p1e({0}) = max{0,1—c~'}
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The Maréenko—Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) ux of Hermitian matrix Ay € CVX s

| N
UN = N;(SM(AN)‘

Theorem (Mar€enko—Pastur Law [Mar€enko,Pastur’67])

XN € CNX™ with i.i.d. zero mean, unit variance entries.
As N,n — oo with N/n — ¢ € (0,00), e.s.d. un of %XNX]’Q satisfies
a.s.
KN — He

weakly, where
> p1e({0}) = max{0,1—c~'}
> on (0,00), pc has continuous density f. supported on [(1 — +/c)?, (1 + +/c)?]

1

2mex

fol@) = ——/(@ = (1 = VO2)(1 + V) —2).
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The Maréenko—Pastur law
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Figure: Mar&enko-Pastur law for different limit ratios ¢ = limx_, o0 N/n.
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The Maréenko—Pastur law
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Spiked models

Let X with i.i.d. (0,1) entries, P a rank-K matrix with K finite as N,n — co. In
either of these scenarios:

11 1
Cn = (IN—l—P)EEXNX}(,(IN—&—P)?

1
;(XN‘FP (Xn +P)*

Q
Z
I

1
Cy=—-XNX5L+P
n

we have pun 25 Le but some eigenvalues can escape the support!
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Spiked models

Let X with i.i.d. (0,1) entries, P a rank-K matrix with K finite as N,n — co. In

either of these scenarios:

A 1

R 1
On=—XNX5+P
n

we have pun 25 Le but some eigenvalues can escape the support!

Density

A 11 " 1

0.8

— - — Empirical law

MP law

2

Eigenvalues of C
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Spiked models

Two fundamental properties (assume here Cn = (In + P)% %XNXX](IN + P)%):
> Phase transition phenomenon: for w; > ... > wg > 0 eigenvalues of P,

2 ) .

a.s k)
N (14 c) w; < /¢
Ai(Cn) — { 1 i+ cltwi ;>\ /C
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Spiked models

Two fundamental properties (assume here Cn = (In + P)% %XNXX](IN + P)%):
> Phase transition phenomenon: for w; > ... > wg > 0 eigenvalues of P,

2 . >

a.s s
A (14 c) w; < /¢
)\,(CN) ? 1 i Cl+(:'i, i>ﬁ

» Eigenvector angle: for uj,...,uk eigenvectors of P and 41,...,un of Cy,
g g ) s UK g ) s UN N
w; < +/c
|1l*ui|2 2) 1—cw] 2
¢ L, wp > \/E
1+cwi

Averaged value of |47 u1 |

Population spike w1
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Wigner's semi-circle law and Tao's full circle law

Other classical examples.

> If Xy € CN XN Hermitian with i.i.d. entries of mean 0, variance l/N, then
(almost surely) uny — p where p has density f the semi-circle law

J@) = 5o\ fa =y,

> If Xy € CVXN has with i.i.d. 0 mean, variance 1/N entries, then asymptotically
its complex eigenvalues distribute uniformly on the complex unit circle, i.e.
uN — p with density

f(z)= %§|z\§1~
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Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Circular law

Empirical eigenvalues
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Figure: Eigenvalues of X n with i.i.d. standard Gaussian entries, for N = 500.
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Outline

Community Detection on Graphs
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System Setting

Assume n-node undirected graph G, with
> ‘“intrinsic” average connectivity qi1,...,qn ~ p i.i.d.
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System Setting

Assume n-node undirected graph G, with
> ‘“intrinsic” average connectivity qi, ..., qn ~ piid.

» k classes C1,..., Cy, independent of {g¢;} of (large) sizes nq
preferential attachment Cy;, between C, and C
> induces edge probability for node i € Cq, j € Cp,

..... ng, with

P(i~j) = qiq;Cap-
> adjacency matrix A with A;; ~ Bernoulli(¢;q;Cqp).

inter-class C, <> Cp
? connectivity Cap

S
L

‘c N 3 o
ASH \ %.ﬁ*‘f" L

intrinsic node
connectivity ¢;
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System Setting

Objective:
Understand and improve performance of spectral community detection methods:
dd"

> based on adjacency A or modularity A — i

matrices (adapted to dense nets)
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Objective:
Understand and improve performance of spectral community detection methods:
T
> based on adjacency A or modularity A — % matrices (adapted to dense nets)
n

> based on Bethe Hessian (r2 — 1)I,, — 7A + D (adapted to sparse nets!).
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|l Eigenvectors |
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System Setting

Eigenv. 1

Eigenv. 2
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System Setting

Eigenv. 1

Eigenv. 2
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System Setting

Eigenv. 1

Eigenv. 2

| I I —

|} p-dimensional representation |}

= T T T
><>)<( XX
[ Xx%‘ n
% X;S
X%
.
X

Eigenvector 2
I

Eigenvector 1

EM or k-means clustering.
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Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with u bi-modal (e.g., p = %60_1 + i60_5)

dd’

— Leading eigenvectors of A (or modularity A — FiE]

) biased by g¢; distribution.
— Similar behavior for Bethe Hessian.
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Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with u bi-modal (e.g., p = %60_1 + i60_5)

dd’
dT1,

— Leading eigenvectors of A (or modularity A —
— Similar behavior for Bethe Hessian.

) biased by g¢; distribution.

T

+
-+

!

(Modularity) (Bethe Hessian)

20/113



Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Cq, j € Cp.

Dense Regime Assumptions: Non trivial regime when, as n — oo,

Map

Cap =1
ab +\/ﬁ

, Map = O(l)
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Regularized Modularity Approach

Connectivity Model: P(i ~ j) = q;qjCqp for i € Cq, j € Cp.

Dense Regime Assumptions: Non trivial regime when, as n — oo,
Mab
vn
= Community information is weak but highly REDUNDANT!

Cap =1+

, Map = O(l)

Considered Matrix:
For o € [0, 1], (and with D = diag(Al,) = diag(d) the degree matrix)

dd"
dT1,

Lo =n2%"3D—¢ [A - } De.

Our results in a nutshell:
> we find optimal aopt having best phase transition.
> we find consistent estimator Gopt from A alone.

> we claim optimal eigenvector regularization D~ 'u, u eigenvector of L.
= Never proposed before!
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each a € [0,1], as n — oo,

Lo — f/a|| — 0 almost surely, where
dd"
Lo =n?*"1p—@ {A - } D™

dTi,
fo = — [LD:“XD*Q + UAUT]
m2e | no ! a

with Dy = diag({q;}), mu = [ tu(dt), X zero-mean random matrix,

1— J 1 —
U= [Dq aﬁ me&Xln]’ rank k+ 1
A= [e = Lee)M I —clf)  —1
1y 0
and J = [j1,.

.y Jkl, Ja =1[0,...,0, 1;';@,0, ...,0]T € R™ canonical vector of class C,,
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)

For each o € [0,1], asn — 00, ||La — La || = 0 almost surely, where

dd’
d'1,

La — n2o¢71D7a |:A _ :| D«

- [ I N T
Lo = e [%Dq XDy + UAU }

with Dy = diag({q;}), mu = [ tu(dt), X zero-mean random matrix,

U= [D;_aﬁ 1MDq_aX1n], rank k + 1

nm
A= [e = Lee)M I —clf)  —1
1y 0
and J = [j1,...,Jk], ja =[0,...,0, 1;';@,0, ...,0]T € R™ canonical vector of class C,.

Consequences:

> isolated eigenvalues beyond phase transition <> A(M) > “spectrum edge”
= optimal choice aopt of a from study of noise spectrum.

> eigenvectors correlated to D;fa.]
= Natural regularization by D®~1J!
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Eigenvalue Spectrum

I I I
. 2
- Eigenvalues of my, Lq

Limiting law

Figure: Eigenvalues of miLl, K =3, n=2000,c; =0.3,cog =0.3,c3 = 0.4,
Mn = %5(11 + %5(12, q1 = 0.4, q2 = 0.9, M defined by ]\/IM =12, Mij = —47i 7é 7
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Phase Transition

Theorem (Phase Transition)
For a € [0, 1], isolated eigenvalue \;(Lq) if |\i(M)| > 7%, M = (D(c) — cc" )M,

T=1

im ————, phase transition threshold
zlS¢  ef(x)

with [S, S| limiting eigenvalue support ofmi"‘La and eg (z) (|| > S ) solution of

q172a
2% = d
et () / e ql,Qae? (x) + qg,gaeg(w)ﬂ( q)

2—2«
@) = [ gt (da).

"
172(18(11 ($) + q272a egc ((L‘)

In this case, fm = X(M).
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1 _
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Theorem (Phase Transition)
For a € [0, 1], isolated eigenvalue \;(Lq) if |\i(M)| > 7%, M = (D(c) — cc" )M,

T=1

im ————, phase transition threshold
zlS¢  ef(x)

with [S, S| limiting eigenvalue support ofmi"‘La and eg (z) (|| > S ) solution of

q172a
2% = d
et () / e ql,Qae? (x) + qg,gaeg(w)ﬂ( q)

q272a
o) = dq).
e3 (z) /—:v—q1*2°‘f:‘1"(:c)+q2*2"‘eg‘(z)u( )

. 1 Ty

In this case, NI L) Ai(M).

Worst-case clustering for \; (M) = ming 7o
> Optimal a = aopt:

Qopt = argmingeo 1) {7a} -

d;

Ja, &

» From max;

a.s, . . . ~
— 0, we obtain consistent estimator Qopt of Qopt -
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Simulated Performance Results (2 masses of ¢;)
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Simulated Performance Results (2 masses of ¢;)
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| |

(Algo with o = 1)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, p = %5,;1 + i(;qZ,

q1=0.1,g2=05,¢c1 =c2 =1, ¢c3 =1, M =1001I5.

(Bethe Hessian)
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Simulated Performance Results (2 masses of ¢;)
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(Bethe Hessian)
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(Algo with o = 1) (Algo with aopt)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, p = %5,;1 + i(;qZ,

_ _ R TR Ty
q1 =0.1,9g2=0.5,¢c1 =c2 = 3,c3 =3, M =100Is. 25/113



Simulated Performance Results (2 masses for ¢;)

11 T T T T T

A 1061 —

1.04 — —

Normalized spike

1.02 — —

1

0.98 L L | ! ! !
2 4 6 8 10 12 14 16

Eigenvalue £ (£ = —1/e5 (\) beyond phase transition)

Figure: Largest eigenvalue \ of miLa as a function of the largest eigenvalue £ of
(D(c) — cc" )M, for p = 354, + %5{12 with g1 = 0.1 and g2 = 0.5, for
a€{0,%,3,3,1, aope} (indicated below the graph). Here, aope = 0.07. Circles indicate

phase transition. Beyond phase transition, £ = —1/e5 (\). 26 /113
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Simulated Performance Results (2 masses for ¢;)
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Simulated Performance Results (2 masses for ¢;)
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Figure: Overlap performance for n = 3000, K = 3, p = %5111 + %&12 with g1 = 0.1 and

a2 €[0.1,0.9], M = 10(213 — 131}), ¢; = 3.
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Simulated Performance Results (2 masses for ¢;)
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Simulated Performance Results (“sparse” power law for ¢;)
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Figure: Largest eigenvalue \ of miLa as a function of the largest eigenvalue £ of
(D(c) — cc")M, for  a power law with exponent 3 and support [0.05, 0.3], for
a€{0,%,3,2,1, aope} (indicated below the graph). Here, aopy = 0.28. Circles indicate

phase transition. Beyond phase transition, £ = —1/e5 (\).
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Simulated Performance Results (“sparse” power law for ¢;)
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Figure: Overlap performance for n = 3000, K = 3, ¢; = %, 1 a power law with exponent 3 and
support [0.05,0.3], M = Als, for A € [10, 150]. Here aopt = 0.28.
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Theoretical Performance

Analysis of eigenvectors reveals:
> eigenvectors are “noisy staircase vectors”
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Theoretical Performance

Analysis of eigenvectors reveals:
> eigenvectors are “noisy staircase vectors”
» conjectured Gaussian fluctuations of eigenvector entries
» for ¢; = qo (homogeneous case), same variance for all entries in same class

> in non-homogeneous case, we can compute “average variance per class”
= Heuristic asymptotic performance upper-bound using EM.
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Theoretical Performance Results (uniform distribution for g;)
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Figure: Theoretical probability of correct recovery for n = 2000, K = 2, ¢; = 0.6, co = 0.4, p

uniformly distributed in [0.2,0.8], M = AlI,, for A € [0, 20].
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Theoretical Performance Results (uniform distribution for g;)

Correct classificate rate

— — — - k-means
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Figure: Probability of correct recovery for n = 2000, K = 2, ¢; = 0.6, c2 = 0.4, p uniformly
distributed in [0.2,0.8], M = AlI, for A € [0, 20].
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Results on Benchmark Graphs

Graph (n, K) ‘ a=0 a= % a=1 a=awpt (value) H BH
Polbooks (105, 3) 0.748  0.757 0.214 0.743  (0) 0.757
Adjnoun (112, 2) | 0571 0.714  0.000 0.571  (0) 0.661
Karate (34, 2) 0.176  0.941 0.353 0.176  (0) 1.000
Dolphins (62, 2) | 0.968 0.968  0.387 0.968 (0.07) || 0.935
Polblogs (1221, 2) | 0.897  0.035  0.040 0.897 (0) 0.304
Football (115, 12) 0.858  0.905 0.905 0.905  (0.16) 0.924

Table: Overlap performance on benchmark graphs.
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Some Takeaway messages

Main findings:
> Degree heterogeneity breaks community structures in eigenvectors.
= Compensation by D! normalization of eigenvectors.

> Classical debate over “best normalization” of adjacency (or modularity) matrix A
not trivial to solve.
= With heterogeneous degrees, we found a good on-line method.

» Simulations support good performances even for “rather sparse” settings.

But strong limitations:
> Key assumption: Cyp =1+ M—‘;”
= Everything collapses if different regime.
> Simulations on small networks in fact give ridiculous arbitrary results.

> When is sparse sparse and dense dense?

> in theory, d; = O(log(n)) is dense...
> in practice, assuming dense regime, eigenvalues smear beyond support edges in critical
scenarios.
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Outline

Kernel Spectral Clustering
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Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

38/113



Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

> Typical metric to optimize:
k
. . K(Ijv I;)
(RatioCut) argming, y...us,={1,...,n} Z Z T
i=1j€S; *
JESi

for some similarity kernel (x,y) > 0 (large if « similar to y).

38/113



Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

> Typical metric to optimize:

. . “ w(z5, T3)
(RatioCut) argming, y...us,={1,...,n} Z Z s
i=1j€S; *
J¢Si

for some similarity kernel (x,y) > 0 (large if « similar to y).

> Can be shown equivalent to

(RatioCut) argmin ;e g tr M™(D - K)M

where M C R™"*k N {M; M;; € {0, |Sj\_%}} (in particular, MTM = I) and

K = {x(zi,z;)}} Dii =

ij=1 Kij.

n
=1

J

38/113



Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,x, € RP
> Objective: “cluster” data in k similarity classes S1,...,Sk.

> Typical metric to optimize:
k
. . K(Ijv I;)
(RatioCut) argming, y...us,={1,...,n} Z Z T
i=1j€S; *
JESi

for some similarity kernel (x,y) > 0 (large if « similar to y).

> Can be shown equivalent to

(RatioCut) argmin ;e g tr M™(D - K)M

where M C R™"*k N {M; M;; € {0, |Sj\_%}} (in particular, MTM = I) and

K = {x(zi,z;)}} Dii =

ij=1 Kij.

n
=1

J

> But integer problem! Usually NP-complete.
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Kernel Spectral Clustering

Towards kernel spectral clustering

> Kernel spectral clustering: discrete-to-continuous relaxations of such metrics
. . T _
(RatioCut) argminy, yrp—y, tr M (D — K)M
i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components
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Kernel Spectral Clustering

Towards kernel spectral clustering

> Kernel spectral clustering: discrete-to-continuous relaxations of such metrics
. . T
(RatioCut) argminy, yrp—y, tr M (D — K)M

i.e., eigenvector problem:

1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

» Refinements:

1 1
» workingon K, D — K, I,, — DK, I, — D 2KD 2, etc.
> several steps algorithms: Ng—Jordan—Weiss, Shi—-Malik, etc.



Kernel Spectral Clustering

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data.
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Methodology and objectives

Current state:
> Algorithms derived from ad-hoc procedures (e.g., relaxation).
> Little understanding of performance, even for Gaussian mixtures!

> Let alone when both p and n are large (BigData setting)
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Methodology and objectives

Current state:
> Algorithms derived from ad-hoc procedures (e.g., relaxation).
> Little understanding of performance, even for Gaussian mixtures!

> Let alone when both p and n are large (BigData setting)

Objectives and Roadmap:
» Develop mathematical analysis framework for BigData kernel spectral clustering
(p,n — o0)
> Understand:

1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector

3. Influence of kernel function

4. Performance comparison of clustering algorithms

Methodology:
> Use statistical assumptions (Gaussian mixture)

> Benefit from doubly-infinite independence and random matrix tools
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Model and Assumptions

Gaussian mixture model:

> x1,...,Tn € RP,
> k classes Cy,...,Cyg,
> 21,...,&ny €C1,. ., Tn—ny+1,---,Tn € Cg,

> C‘l = {LB ‘ €z NN(MUL-,CG,)}-
Then, for x; € Cq, with w; ~ N(0,Cq),

Ti = fla + W;.
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Model and Assumptions

Gaussian mixture model:

> x1,...,Tn € RP,

> k classes Cy,...,Cyg,

> 21,...,&ny €C1,. ., Tn—ny+1,---,Tn € Cg,
> Co ={z | 2~ N(ta,Ca)}.

Then, for x; € Cq, with w; ~ N(0,Cq),

Ti = fla + W;.

Assumption (Convergence Rate)
Asn — oo,
1. Data scaling: £ — ¢o € (0, 00),
2. Class scaling: Z= — ¢, € (0,1),
k ng Iy

3. Mean scaling: with u°® = T2 e and pg = pa — p°, then

a=1 n
uall =0O()

4. Covariance scaling: with C° £ 213:1 "T”C'a and C§ £ C, — C°, then

ICull = 01), %trcg — o).
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

1 n
K = {f (};nwﬁw)} B
i,j=

for some sufficiently smooth nonnegative f.

43 /113



Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

1 n
K = {f (};nwﬁxjnﬂ)} B
i,j=

for some sufficiently smooth nonnegative f.

» We study the normalized Laplacian:
1 1
L=nD 2KD™ 2

with D = diag(K15).
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Model and Assumptions

Difficulty: L is a very intractable random matrix
> non-linear f

> non-trivial dependence between entries of L
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Model and Assumptions

Difficulty: L is a very intractable random matrix
> non-linear f

> non-trivial dependence between entries of L

Strategy:

1. Find random equivalent L (i.e., ||L — L|| 2% 0 as n,p — o) based on:

> concentration: K;; — constant as n,p — oo (for all 4 # j)
»> Taylor expansion around limit point

2. Apply spiked random matrix approach to study:

> existence of isolated eigenvalues in L: phase transition
> eigenvector projections on canonical class-basis

44 /113



Random Matrix Equivalent

Results on K:

» Key Remark: Under our assumptions, uniformly on 4,5 € {1,...,n},
1 X
=i - 25 7

p

for some common limit 7.
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Random Matrix Equivalent

Results on K:
» Key Remark: Under our assumptions, uniformly on 4,5 € {1,...,n},
1 as
=i - 25 7
p

for some common limit 7.
> large dimensional approximation for K:

K= f(r)1,1] + NGV + As
N—— ——

—
Oy (n) low rank, O} (vV/n) informative terms, O} (1)
» difficult to handle (3 orders to manipulate!)

Observation: Spectrum of L:

1
> Dominant eigenvalue n with eigenvector D2 1,
> All other eigenvalues of order O(1).

= Naturally leads to study:
> Projected normalized Laplacian:
Dz1,1TD2
L' =nD 2KD 2 —p— "
17 D1,
1
D21,

V1T D1y’

» Dominant (normalized) eigenvector

45
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)

a.s,

As n,p — oo, in operator norm, HL’ — 1| &% 0, where

Fr_ f/(T)
=0

and T = %trCO, W =[wi,...,wp] €ERPX" (z; = pg +w;), P=1In — %lnll,

FPWTWP + UBUT} +a(r) I,
p

1
U= 7qu),¢:| eRnX(2k+4)
[\/15

T (5() _ ()
Bu L-1e” (G - )
B= I, —clf Ok xk Okx1 € R(Zh+4)x (2k+4)

5£' (1) £"(r)
O1xk 871 27700
7)

GO PR PR 2L
87(r)  2(7) F e 2P

557(r) () ,T
(sm) 2f’(f))t

By =M"M+ ( 1,17 € RFXE,
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)

As n,p — o0, in operator norm, ‘

Llfﬁl

a.s.
— 0, where

[T A FPWTWP + UBUT} + o)1y,
f(r) Lp

and T = %trCO, W = [wi,

,Wn] € RPX™ (5 = o +w;), P =1, — 11,17,
U= {LJ,qmp} € RX(2k+4)
VP

T 5 (r) _ f"(7)
Bu = 1xe” (- p5)
B = I, — 61{ O x o Okx1 € R(2k+4) % (2k+4)
(5f/(7) £ () > T 0 5f(r) _ (1)
8f(r)  2f(7) Ixk 8f(7) 2f7(7)
! 1 "
POV VR L B P PR (A
8f(r)  2f'(7) f(7) n 2f/(r)
Important Notations:
%J =[j1,. ..

Ik € RnXk, ja canonical vector of class Cq.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)

L —r

a.s,

As n,p — oo, in operator norm, ‘ = 0, where

= 2l FPWTWPJrUBUT} +a(r)n
() Lp

and T = %trCo, W = [wi,

. wp] € RPX™ (z;

U= {LJ@,A € R (2kH4D)
VP

Ma “sz)' P=1I,— %1111;';,

Bi1

1.7 5f(r) _ f(n)
Lo-we” (R - HE)1 N
B= I, — 1] Ok Okx1 € R(2k+4)x(2k+4)
5£(r) _ £\, T 5£/(r) _ f'(x)
(58 - 53)¢ O1xk

8f(r) — 2f7(7)
ST SYONY e P R e LT
B =M+ (G0 - T ) o - S T R i e

Important Notations:

M =[p5, ... 7] € RMF, pg =

k ny
a — MHa — 25:1 T Hb-
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)

. T a.s.
As n,p — oo, in operator norm, ‘ L' — L'|| =3 0, where

= —Qf,(T) FPWTWP + UBUT} + a(r)In
f(r) Lp

and 7 = %trCo, W = [wi,...,wn] € RP*™ (z; = pg +w;), P =1, — %LLI;'—L,

U= |:LJ’¢.’¢:| c RX(2k+4)
VP

T )
Bu -t (Y - )
B= I — cl;'; Ok xie Okx1 c R(2k+4)><(2k+4)

55'(r) _ £\ T 5£'(r) _ (1)
(8f(f) 2f’(T)> t Ok 570 T 27
5f'(r)  f'(7) ) ot _ ' (r) p f(r)a(r)

8f(r)  2f'(r) GG

1x1] € REXE,

Bi1 :MTM+(

Important Notations:

t=[Ltcy,..., Lucp| €RE 02 =Ca— Tk, 2.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)

As n,p — oo, in operator norm, ||L' — 1’| 255 0, where
. / 1
i = o8 ) {—PWTWP + UBUT} +alr)n
f(r) Lp

and T = %trC’O, W = [wi,...,wnp] € RP*" (z; = pg +w;), P =1, — %lnl;';,

U= |:LJ,¢’,’¢:| € RX(2k+4)
p

f
T 5f°(r) _ ()
b ne- e (Y5 - )
B= I, — c1{ Ok xk Oksc1 € R(2k+4)x (2k+4)

57 27 () O1x¢k 570 T 27
5f(r) f"(ﬂ) T f”(T)T p f(r)a(r)
s 2r(m)" T Fm e e

<5f’(‘r) S(r) ) T 5/7(1) _ (1)

By =M"M+ ( 1x1] € REXE,

Important Notations:
1 oo k kxk o _ k np
T:{;trCaCb}a ERFXE 00 = Cf — Sk 12Cy.
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Random Matrix Equivalent

Some consequences:
» [/isa spiked model: UBUT seen as low rank perturbation of %PWTWP
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Random Matrix Equivalent

Some consequences:
» [/isa spiked model: UBUT seen as low rank perturbation of %PWTWP

> If f/(1) =0,
> L’ asymptotically deterministic!
» only t and T' can be discriminated upon

> If /(1) =0, (e.g., f(z) ==x) T unused

’ "
> If ‘ZG((:)) = gff/i((:)) t (seemingly) unused
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Isolated eigenvalues: Gaussian inputs

T
I Eigenvalues of L/ [ Eigenvalues of L./

Figure: Eigenvalues of L’ and L/, k = 3, p = 2048, n = 512, ¢; = ¢ = 1/4, c3 = 1/2,
[alj = 4805, Ca = (1 +2(a — 1)//P)Ip, f(z) = exp(—=/2).
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Isolated Eigenvalues

Two-step Strategy:
1. Study limiting eigenvalue distribution (and its support S) of %PWTWP
2. Solve, for A € S,

1
det (7PWTWP +UBUT — )Jn) =0.
p
Equivalent to solving smaller dimensional:
det (BUTQ)\U> =0

with Q) = (%PWTWP — A,)" L
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Isolated Eigenvalues

Lemma (Deterministic Equivalent)
For z € C away from eigenvalues of %PWTWP and

1 -t 1 -1
Q.= (;PWTWP - zIn) , Qe = (];WPWT - zIp)

Then, as n — oo,

T VK
Q- < Q2 2 codiag {ga(2)1n, }r_, — {(i +eo ga(2)gp(2) > Lng 1y, }

%
2 iz cigi(?) n ab=1

_ k -
Q.= Q. % <—z I, + Z caga(z)Ca:|>
a=1
where (g1,...,9x) are the unique (Stieltjes transforms) solutions to

0= (o 1+ 2w ])”

and Ay, <> B, means %tr DnpA, — %tanBn 2% 0 and d-lr’n(An — Bp)da,n 2%0
for deterministic bounded Dy, d; .
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Isolated Eigenvalues

Theorem ((Useful) isolated eigenvalues)
Define the k x k matrix

G, =h(r,2)I + D; -T2

where

Dre = ~ablr M@ — i) BT+ (S5 - 1585 ) o
Caga(Z)Cbgb(Z) }k

i=1 ngz(z)

', = diag {Caga(z)}];:1 - {

_ 5//(r) _ 1"(0)
h(t,z) =1+ (Sf( T ) Z caga(z) trC’2
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Isolated Eigenvalues

Theorem ((Useful) isolated eigenvalues)
Define the k x k matrix

G, =h(r,2)I + D; -T2

where

Drs = —2h(r M QoM ) T T + (ZJ;((TT)) - gf((:))) !
Caga(Z)Cbgb(Z) }k

i=1 ngz(z)

', = diag {Caga(z)}];:1 - {

_ 5f'(r) _ f"(7)
Mr) =1 (Sf(T) 2f/( T)) Z caga(?) trCQ

If p & S is such that h(t,p) # 0 and G, has a zero eigenvalue of multiplicity m,,, then
_2 f(T

G (L — o(7)In) has m, isolated eigenvalues converging to p.
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Isolated eigenvalues: MNIST

0.2 T T T
0.15 =
0.1 e
5.1072 -
0 an | @ an | n | | n
0 10 20 30 40 50

Figure: Eigenvalues of L’ (red) and (equivalent Gaussian model) L’ (white), MNIST data,
p =784, n=192.
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Isolated eigenvalues: MNIST

0.2 T T T T
I I Eigenvalues of L/
[ Eigenvalues of L/ as if Gaussian model
0.15 —
0.1 —
5.1072 N
o Mirms (00 o e | o W \ \ .

0 10 20 30 40 50

Figure: Eigenvalues of L’ (red) and (equivalent Gaussian model) L’ (white), MNIST data,
p =784, n=192.
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Eigenvectors
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> Study “easy” eigenvector Déln
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Eigenvectors

Strategy:
1
> Study “easy” eigenvector D21,
> Independently, for each spike eigenvalue, study eigenvector projections on basis J

Dominant Eigenvector:

Proposition (Eigenvector D3 1n)

We have
D21 1 1 f(r) 2 g
n n T e . ’ 1
_ = 4 taln, Yoy + diag ~tr (C2)1,, + o(n
ViDL, v e agm |ttt {\/p (C@lney e o)

with o ~ N(0,1,).
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Eigenvectors

Strategy:

> Study “easy” eigenvector Déln

> Independently, for each spike eigenvalue, study eigenvector projections on basis J

Dominant Eigenvector:

Proposition (Eigenvector Déln)
We have

1 k
D31, 1, 1 f(n) . , 2 . .
— = + taln, Yoy + diag ~tr (C2)1,, + o(n
VIIDL, i nye 2f(r) tfolna oz BV P 7 )

with ¢ ~ N(0, In).

Remark:
1 . .
» D21, block-wise constant + noise

> only information about tr Cg!
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Eigenvectors

Isolated eigenvectors

Theorem (Eigenvector projections)

Let p isolated eigenvalue and 11, its associated subspace in L, then

1o _
;JTH;}J = —h(7,p)L'pEp + o(1)

where J = [j1,...,Jji| canonical class-basis, and
=, mz (Veu)i(Vip)T

(Vi,p){ G, (Vep)i

with Vi p, Vi, € Ck*™p right and left eigenvectors of G, associated with eig. zero.
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Eigenvectors

Isolated eigenvectors

Theorem (Eigenvector projections)

Let p isolated eigenvalue and 11, its associated subspace in L, then
1 r- _
5J HpJ = —=h(7,p)I'pZp + 0(1)

where J = [j1,...,Jji| canonical class-basis, and

_ i (Vep)i (Vi)Y
(Vi) TG (Vi)

with Vi p, Vi, € Ck*™p right and left eigenvectors of G, associated with eig. zero.

Remark: m, =1 case
> [JTuuT J]aa = |53 u|?: eigenvector “level” in class Cq
» E=1-— %tr (diag({1/c;})JTunT J): total noise energy
> Eigenvector levels given by eigenvectors of G, = h(T, p)I, + D+ ,Ip.
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Eigenvectors

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data (red), versus Gaussian
equivalent model (black), and theoretical findings (blue).
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Eigenvectors

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data (red), versus Gaussian
equivalent model (black), and theoretical findings (blue).
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Corollary: let (¢, ) isolated eigenpair of I, + M diag({c;})MT,
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Case Ch1 =...=C) =1

Corollary: let (¢, ) isolated eigenpair of I, + M diag({c;})MT,
» Condition for Existence: |¢ — 1| > /cg (classical spike random matrix result)

> Eigenvalues: isolated eigenvalue p of — 2f((7)—) (L —a(r)In)

1z+ ¢
P= —1

» Eigenvectors:

1

%JTHpJ = (Z - ﬁ) diag({e; DM Y, YT M diag({ci}) + o(1).
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Case Ch1 =...=C) =1

Corollary: let (¢, ) isolated eigenpair of I, + M diag({c;})MT,
» Condition for Existence: |¢ — 1| > /cg (classical spike random matrix result)

> Eigenvalues: isolated eigenvalue p of — 2f((7)—) (L —a(r)In)

1z+ ¢
P= —1

» Eigenvectors:

1

%JTHpJ = (Z - ﬁ) diag({e; DM Y, YT M diag({ci}) + o(1).

Remark: Does not depend on f!
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Case M =0, Co = (1+ /)1

Corollary: let v = [v1,... ﬂk]T and

_ (3 ) S
= (3 - 7)) (”; 7)

Then,
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Case M =0, Co = (1+ /)1

Corollary: let v = [y1,...,7x]" and

(S

(1)
8f(r)  2f'(7)

) <2+azk:1caﬁ/§> .

Then,
» Condition for Existence: |¢ — 1| > ,/co (classical spike random matrix result)

57 /113



Case M =0, Co = (1+ /)1

Corollary: let v = [y1,...,7%]" and
51'(r) _ f"(7) ) L
0= - 2 02 .
<8f(7) 20(7) ( * 2 e >
Then,

» Condition for Existence: |¢ — 1| > ,/co (classical spike random matrix result)

» Eigenvalues: isolated eigenvalue p of —M L—oa(r)I,
2f7(r)

£+ 13
D= — e
£ co -1
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Case M =0, Co = (1+ /)1

Corollary: let v = [y1,...,7%]" and
5//(7) W@) L
0= - 2 02 .
<8ﬂﬂ 20(7) ( *;%C”>
Then,

» Condition for Existence: |¢ — 1| > ,/co (classical spike random matrix result)

» Eigenvalues: isolated eigenvalue p of —M L—oa(r)I,
2f7(r)

l l

|

> Eigenvectors:

s L
S 5 diag({ci})y" diag({ei}) + o(1).

1
—J M) = —————
n 2 + Za:l CaYg
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Case M =0, Co = (1+ /)1

Corollary: let v = [y1,...,7%]" and
51'(r) _ f"(7) ) L
0= - 2 A
<8f(7) 27/(7) ( + 2, >
Then,

» Condition for Existence: |¢ — 1| > ,/co (classical spike random matrix result)

» Eigenvalues: isolated eigenvalue p of —%(L —o(r)In)

l l

T w1

> Eigenvectors:

1— —Co _
— D% Giag({ei vy diag({er}) + o(1).
2+ Za:1 Ca'Yg

1
—J,J =
n
Remark:
> only ONE isolated eigenvalue

> eigenvector alignment directly linked to ~,'s.
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Further Results

Beyond Class-wise means:
> per-class fluctuations

> per-class cross-eigenvector fluctuations
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> per-class cross-eigenvector fluctuations

Consequences:
> see M isolated eigenvectors as n points in RM

> clustering x1, ..., x, < clustering n points in RM

Method:

> per-class fluctuations: for each a, estimate

tr <diag(ja)ﬁp)

= for flp = upuy, gives access to tr (diag(ja)upuy) = uj diag(ja)up
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Further Results

Beyond Class-wise means:
> per-class fluctuations

> per-class cross-eigenvector fluctuations

Consequences:
> see M isolated eigenvectors as n points in RM

> clustering x1, ..., x, < clustering n points in RM

Method:

> per-class fluctuations: for each a, estimate
tr <diag(ja)ﬁp)

= for flp = upuy, gives access to tr (diag(ja)upuy) = uj diag(ja)up

» cross-eigenvector fluctuations: for each a and (p1, p2), estimate
1 - . A
;J Iy, dlag(]a)np’z‘]

L

= for I, = upuy, gives access to (uy diag(ja)up,) X (\/EJTUM)(%“ZQ J)

58
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data (red), versus Gaussian
equivalent model (black), and theoretical findings (blue).
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1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data (red), versus Gaussian
equivalent model (black), and theoretical findings (blue).
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Theoretical Findings versus MNIST

P WY s
Vo WAV | | | | |

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data (red), versus Gaussian
equivalent model (black), and theoretical findings (blue).
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Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1 Eigenvector 3/Eigenvector 2

| | | | | | |
—.09 —.08 —.07 —.06 —0.1 0 0.1

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Some Takeaway messages

Surprising findings:
> “Good kernel functions” f need not be decreasing.
» Dominant parameters in large dimensions are first three derivatives at 7.
> More importantly, clustering possible despite ||z; — acj||2 — T, i.e., no first order

data difference
= Breaks original intuitions and problem layout!

Validity of the Results:

> Needs a concentration of measure assumption: ||z; — ;|| — 7.

> Invalid for heavy-tailed distributions (where ||z;|| = ||/7:zi|| needs not converge).

> Suprising fit between theory and practice: are large images essentially Gaussian
vectors?

> kernels extract primarily first order properties (means, covariances)
> with no fancy image processing (rotations, scale invariance), may be strong enough

features.
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Outline

Semi-supervised Learning
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Problem Statement

Context: Similar to clustering:

> Classify 1,...,zn € RP in k classes, but with labelled and unlabelled data.
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Problem Statement

Context: Similar to clustering:
> Classify 1,...,zn € RP in k classes, but with labelled and unlabelled data.
> Problem statement: (d; = [K1x];)

k
F = argming cpnxk Z ZKij(Fmdtilfl _ Fjad;_xfl)z

a=1i;

such that F;, = 6{@6%}7 for all labelled x;.

63

113



Problem Statement

Context: Similar to clustering:

> Classify 1,...,zn € RP in k classes, but with labelled and unlabelled data.

> Problem statement: (d; = [K1x];)

k
F = argming cpnxk Z ZKij(Fmdtilfl _ Fjad;_xfl)z

a=1i;

such that F;, = 6{@6%}7 for all labelled x;.

» Solution: denoting F g Rruxk F() ¢ R Xk the restriction to
unlabelled/labelled data,

—1
(u) _ D« a—1 —a a—1 (1)
F = (Lo, = DS Ky Dyt Do K Diyy ' F

where we naturally decompose

K K
K = [ EKan <z,u>}
[K<u,1> K (u,u)

D 0 .
D= [ él) D(“)} = diag {K1,}.
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Problem Statement

Using F(u).

» From F(), classification algorithm:

Classify z; in Cq, & Fijq = . max {sz}
e{
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Problem Statement

Using F(u).

» From F(), classification algorithm:

Classify z; in Cq, <& Fijq = b max {sz}
e{

Objectives: For z; ~ N (ua,Cq), and as n,p — 0o, (ny,n; — 00 Or Ny — 00,

n; = 0(1))
> Tractable approximation (in norm) for the vectors [F(,]..a, a =1,...,k

> Joint asymptotic behavior of [F(,]i,.
= From which classification probability is retrieved.
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Problem Statement

Using F(u).

» From F(), classification algorithm:

Classify z; in Cq, <& Fijq = b max {sz}
e{

Objectives: For z; ~ N (ua,Cq), and as n,p — 0o, (ny,n; — 00 Or Ny — 00,

ny = O(1))
> Tractable approximation (in norm) for the vectors [F(,]..a, a =1,...,k
> Joint asymptotic behavior of [F(,]i,.
= From which classification probability is retrieved.

» Understanding the impact of «
= Finding optimal a choice online?
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MNIST Data Example

T T T
[F(u)]*,l (Zeros)
1.2 —
1 -
=9
i
0.8 —
| | |
0 50 100 150

Index

Figure: Vectors [F(“')],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n
p = 784, n;/n = 1/16, Gaussian kernel.

=192,
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MNIST Data Example

T
[F(u)]*,l (Zeros)
[F(u)]-,2 (Ones)
1.2 |- —
Skl 1 |
%
0.8 -
| | |
0 50 100 150
Index

Figure: Vectors [F(“)],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.



MNIST Data Example

I
[F(u)]*,l (Zeros)
— [F(y)l.,2 (Ones)
[Fu)l.,3 (Twos)
1.2 - w3
=) |
L
0.8 |
| | |
0 50 100 150
Index

Figure: Vectors [F(“)],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Comments

Not at all what we expect!:

> Intuitively, [F(*)]; , should be close to 1 if #; € C, or 0 if x; ¢ C, (from cost
function Kij(Fi,a — j’a)Q)

> Here, strong class-wise biases

» But, more surprisingly, it still works very well !

We need to understand why...

66 /113



MNIST Data Example

1072
T T T
[F(O“)]-,l (Zeros)
4 | —
3=
R 2 -
~
ol
W
e
[ o y
s
&,
92| .
-4 I I I .
0 50 100 150

Index

Figure: Centered Vectors [F<°u>].,a = [Flu) — %F(u)lkl.,';].,a, a =1,2,3, for 3-class MNIST
data (zeros, ones, twos), n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1072
T
[F(Ou)]-,l (Zeros)
. |l [F(O,u>]4,2 (Ones)
3=
R 2 —
—
21
A
e
[ 0n y
s
2
—_92 |
-4 | | | .
0 50 100 150

Index

Figure: Centered Vectors [F(Ou)].,a = [Flu) — %F(u)lklm-,a, a =1,2,3, for 3-class MNIST
data (zeros, ones, twos), n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1072

T
[F(Ou)]':l (Zeros)

. e [F(O,u>]4,2 (Ones)
[ [F(Ou)]':3 (Twos) ||
3=
R/ 2 |l |
E%
f
0 | i
| (4L
o i l
2
—2 N |
-4 | | | .
0 50 100 150

Index

Figure: Centered Vectors [F(Ou)].,a = [Flu) — %F(u)lkl;z]-,a, a =1,2,3, for 3-class MNIST
data (zeros, ones, twos), n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

Probability of correct classification

| | |
-1 —0.5 0 0.5 1

Index

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: We assume n;/n — ¢; € (0,1) (“numerous” labelled data setting)

> Recall that we aim at characterizing
-1
_ - -1 — —1 (1
FO) = (I, = DS K Din ) PGS K DGy FO

> A priori difficulty linked to resolvent of involved random matrix!
> Painstaking product of complex matrices.
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Theoretical Findings

Method: We assume n;/n — ¢; € (0,1) (“numerous” labelled data setting)

> Recall that we aim at characterizing

-1
(u) _ D« a—1 —a a—1 (1)
FO = (In, = DS Ky D3yt ) DRl K DGy F

> A priori difficulty linked to resolvent of involved random matrix!
> Painstaking product of complex matrices.

» Using Taylor expansion of K as n,p — oo, we get
T 1
Ky = f(M)ln,1n, + O (n72)
1
Dy = nf(1)In, +O(n2)

and similarly for K, 1), D).
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Theoretical Findings

Method: We assume n;/n — ¢; € (0,1) (“numerous” labelled data setting)

> Recall that we aim at characterizing

—1
(u) _ —a a—1 (1)
F = (In, = DL K D8 ) Do Koy Dy ' F

> A priori difficulty linked to resolvent of involved random matrix!
> Painstaking product of complex matrices.

» Using Taylor expansion of K as n,p — oo, we get
T 1
K = (M), 1, +O)(n72)
1
Dy = nf(1)In, +O(n2)

and similarly for K, 1), D).
> So that

l'lu Ty,

—1
1 1
(Fn = DS K DEs ) = <I"u -, O 2)>

which can be easily Taylor expanded!
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Main Results (so far)

Results:

» In the first order,

a [/(1177, —
F.(Z) — C”L |:U+a u:| + O(n 1)
’ n vn —_——

Information is here!

where v = O(1) random vector (entry-wise) and t, = %tr ce.

> Many consequences:
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Main Results (so far)

Results:

» In the first order,

a Laln -
F(’Z) — e [v+a “] +  om™h
n vn —_——

Information is here!

where v = O(1) random vector (entry-wise) and t, = %tr ce.

> Many consequences:
» Random non-informative bias linked to v
> Strong Impact of n; 4!
= All n; o must be equal OR F") need be scaled!
> Additional per-class bias atq 1y, : no information here
= Forces the choice P

=0+ —.
a +\/ﬁ

» Relevant information hidden in smaller order terms!
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MNIST Data Example

Simulations

Probability of correct classification

| | |
-1 —0.5 0 0.5 1

Index

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.



MNIST Data Example

Probability of correct classification

Simulations

Theory as if Gaussian

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,

p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1

0.8 -

0.6 —

Probability of correct classification

| | |

-1 —0.5 0 0.5

Index

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1
p =784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

0.8 -

Probability of correct classification

Simulations

Theory as if Gaussian

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1568,

p = 784, n;/n = 1/16, Gaussian kernel.
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Outline

Support Vector Machines
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Problem Statement

Context: All data are labelled, we classify the next incoming one:

> Classify z1,...,xn € RP in k = 2 classes.
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Problem Statement
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i=1

for a certain cost function ¢(z; w, b).
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> For kernel K (z,y) = ¢(x)T¢(y), ¢(x) € RY, find hyperplane directed by (w, b) to
“isolate each class”.

. 1 ¢
(w,b) = argmin ,cpq—1 lwl?® + - Zc(mi;w,b)
i=1

for a certain cost function ¢(z; w, b).

Solutions:
» Classical SVM:

(5w, 8) = 2y, (wT (o) +0)21)
with y; = +1 depending on class.
= Solved by quadratic programming methods.

= Analysis requires joint RMT + convex optimization tools (very interesting but
left for later...).
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Problem Statement

Context: All data are labelled, we classify the next incoming one:

> Classify z1,...,xn € RP in k = 2 classes.

> For kernel K (z,y) = ¢(x)T¢(y), ¢(x) € RY, find hyperplane directed by (w, b) to
“isolate each class”.

. 1 ¢
(w,b) = argmin ,cpq—1 lwl?® + - Zc(mi;w,b)
i=1

for a certain cost function ¢(z; w, b).

Solutions:
» Classical SVM:
c(@isw, b) = 14y, (wTg(a;)+5)>1}
with y; = +1 depending on class.

= Solved by quadratic programming methods.

= Analysis requires joint RMT + convex optimization tools (very interesting but
left for later...).

> LS SVM:
(@i w,b) = vef = (yi —w' p(wi) — b)*.
= Explict solution (but not sparse!).
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Problem Statement

Classical SVM

\

LS SVM

0(17), z; € Cy

\
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LS SVM

For new datum z, decision based on (sign of)
9(@) =aTK(,2)+b

where o € R™ and b are solution to

b sl (=[]

with y = [y;]7"_,, ¥ some parameter to set.
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LS SVM

For new datum z, decision based on (sign of)
g(z) = a K(,z)+b
where oo € R™ and b are solution to
i seden] [ =[]
1, K+ %In al ~ |y
with y = [y;]7"_,, ¥ some parameter to set.

Objectives:
» Study behavior of g(z)
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LS SVM

For new datum z, decision based on (sign of)
9(@) =aTK(,2)+b

where o € R™ and b are solution to

b sl (=[]

with y = [y;]7"_,, ¥ some parameter to set.

Objectives:
» Study behavior of g(z)
» For z € C,, determine probability of success.

> Optimize the parameter v and the kernel K.
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Early Results

As before, z; ~ N (pa,Ca), a =1,...,k, with identical growth conditions, here for
k=2.
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Early Results

As before, z; ~ N (pa,Ca), a =1,...,k, with identical growth conditions, here for

k=2.

Results: As n,p — oo,
> in the first order

— 0 G
g(ﬁ):%+ﬁ+ ;I)
——

Relevant terms here!

> G(z) proportional to v
» G(z) asymptotically Gaussian with in particular

—cM el
E[G()] = { coM , x€Co

2c1c2 |: af" ()

M =

=2f'(T)|lp2 — pal? + £ (7)(t2 — t1)* +

tr (C1 — 02)2
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Early Results

As before, z; ~ N (pa,Ca), a =1,...,k, with identical growth conditions, here for
k=2.

Results: As n,p — oo,
> in the first order

— 0 G
g(fﬂ):%‘i’ﬁ+ ;I)
——

Relevant terms here!

> G(z) proportional to 7
» G(z) asymptotically Gaussian with in particular

—c M , xeC
E[G(=)] = { coM , x€Co

M= 2o [—2f’<r>||u2 P 4 ()t — 1) 4 2O

tr (C1 — 02)2

Consequences:
> Strong class-size bias
= Proper threshold must depend on ngo — nj.
. _1
> Natural cancellation of O(n™ 2) terms.

= Similar effect as observed in (properly normalized) kernel spectral clustering.
> Choice of 7 asymptotically irrelevant.
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Early Results

As before, z; ~ N (pa,Ca), a =1,...,k, with identical growth conditions, here for
k=2.

Results: As n,p — oo,
> in the first order

— 0 G
g(fﬂ):%‘i’ﬁ+ ;I)
——

Relevant terms here!

> G(z) proportional to 7
» G(z) asymptotically Gaussian with in particular

—c M , xeC
E[G(=)] = { coM , x€Co

M= 26;62 [_2f/(7)||u2 — |+ () (k2 = t1)? + A, (C1 = C2)?

Consequences:
> Strong class-size bias
= Proper threshold must depend on ngo — nj.
> Natural cancellation of O(n*%) terms.
= Similar effect as observed in (properly normalized) kernel spectral clustering.
> Choice of 7 asymptotically irrelevant.
> Need to choose f/(7) < 0 and f”/(7) > 0 (not the case for clustering or SSL!)
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Theory and simulations of g(x)

250

200

150

100

50

g(x)

Figure: Values of g(z) for Gaussian x;'s (different means and covariances) versus limiting
theoretical distribution, n = 512, p = 1024.
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Outline

Neural Networks: Extreme Learning Machines
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Problem Statement

General plan for the study of neural networks:
> Objective is to study performance of neural networks:
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Problem Statement

General plan for the study of neural networks:
> Objective is to study performance of neural networks:
> linear or not (linear is easy but not interesting, non-linear is hard)
» from shallow to deep
> recurrent or not (dynamic systems, stability considerations)
> back-propagated or not (LS regression versus gradient descent approaches)
» Starting point: simple networks
»> Extreme learning machines: single layer, randomly connected input, LS regressed
output.
> Echo-state networks: single interconnected layer, randomly connected input, LS
regressed output.
> Deeper structures: back-propagation of error.
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Extreme Learning Machines

Context: for a learning period T'

> input vectors z1,...,x7 € RP, output scalars (or binary values) 71, .

» n-neuron layer, randomly connected input W € R"**XP
> ridge-regressed output w € R™
» non-linear activation function o.

N neurons

O w
O
r | O
O
O
X = [z1,...,27]

..,r7 €R
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p,T — co
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> Training MSE:

1
B(X,r) = L lr— TS
with
Y =[c(Wz1),...,0(Wzr)]

'y 12T2+ I B
w= = — r.
T T YiT

» Testing MSE: upon new pair (Z, ),

E (X, 2,7) = ||f —wTo(Wa)|?.
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Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p,T — co
> Training MSE:

1
B(X,r) = L lr— TS
with
Y =[c(Wz1),...,0(Wzr)]

'y 12T2+ I B
w= = — r.
T T YiT

» Testing MSE: upon new pair (Z,7),

E (X, 2,7) = ||f —wTo(Wa)|?.

» Optimize over ~.
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Technical Aspects

Training MSE:
> Training MSE given by

1 +~
Ey(X,r) = ’Y2TTTQ3T

- 1 -2
Q- = (?2T2+71T) .
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Training MSE:
» Training MSE given by

1+~
Ey(X,r) = ’Y2TTTQ3T
- 1 -2
Q- = (?25 +7IT) .

> Testing MSE given by

. 1 - |2
Ey(X,r;%,7) = ?J(WQE)TEQ,YT

7 —

> Requires first a deterministic equivalent @«/ for Q«, with non-linear o (-).
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Technical Aspects

Training MSE:
» Training MSE given by

1 =
Ey(X,r) = ’YQTTTQEYT
- 1 -2
Q= (?25 +~,IT) .

> Testing MSE given by

. 1 - |2
Ey(X,r;%,7) = To(W@)TEQw

7 —

> Requires first a deterministic equivalent @«/ for QW with non-linear o (-).

» Then deterministic approximation of %O’(WG)TZQV[) for deterministic vectors
a,b.
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Technical Aspects

Bai—Silverstein approach:

> Assume 67 = (F 4 ~vI7)~ ! for some deterministic F.
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Technical Aspects

Bai—Silverstein approach:
> Assume 67 = (F 4 ~vI7)~ ! for some deterministic F.

» For A deterministic, we manipulate %tr AQ7 — %tr AQA,, to obtain

1 ~ 1 = 1 ~ 1 =
?trAQW - ?trAQW = ?trAQv (F - ?ZTZ) Q-

1 ~ = 11 2 45 T
= S AQyFQy — ; 751 QrAQ S

1 & %Z’II,‘Q’\, AQ'y,fiE

1 ~ =
= —tr AQ, FQy — —
T i=1

where Q.,,_; = ( =Ty — %ZT i+ yIr)~t

T 1+%27‘,-C~2A,42I_
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Technical Aspects

Bai—Silverstein approach:
> Assume 67 = (F 4 ~vI7)~ ! for some deterministic F.

» For A deterministic, we manipulate %tr AQ7 — %tr Aéw, to obtain
1 ~ 1 = 1 ~ 17 =
?trAQ—Y - ?trAQ—y = ?trAQ7 (F - ?E Z) Q~

1 - = 1 n 1 = ~
= ZAGyFQy — 53 %G5 AQ ST

=1

1 & 750, QrAQy, X

1 - =
= SwAQFQy —

where Qi = (37 — 43T % +yIp) 1.
> Here ;. = o(W;,.X) independent of Q%,i

—
T 1+ 55,Qy, i8]

84 /113



Technical Aspects

Bai—Silverstein approach:
> Assume 67 = (F 4 ~vI7)~ ! for some deterministic F.

» For A deterministic, we manipulate %tr AQ7 — %tr Aéw, to obtain
1 ~ 1 = 1 ~ 17 =
?trAQ—Y - ?trAQ—Y = ?trAQ—y (F - ?Z Z) Q~

1 -~ = 11 = A T
= S AQyFQy — > 7 5 QrAQy DS

=1
1~ = 18 AT.0,40, 5T
= S AQYFQy — r i

—
T 1+ 55,Qy, i8]

where Qi = (37 — 43T % +yIp) 1.

> Here ;. = o(W;,.X) independent of wai
— reasoning broken on co-resolvent! (lucky that we need QW and not Q)
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Technical Aspects

(Conjectured) updated trace lemma:

Lemma

For A deterministic and o(t) polynomial, Wy; i.id. E[W;;] =0, E[W] = i
1 r 1 a.s,
FTiAD] - ZtrexA 50

with

1
bx =E|-c(WX)To(WX)|.
n
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Technical Aspects

(Conjectured) updated trace lemma:

Lemma

For A deterministic and o(t) polynomial, Wy; i.id. E[W;;] =0, E[W] = i
1 r 1 a.s,
FTiAD] - ZtrexA 50

with

1
bx =E|-c(WX)To(WX)|.
n

For instance,

> for o(t) =t,
by ="2xTx
n
» for o(t) = 2,
m% T T T my — 3m§ T
Py = 2 (a(X X) + 20(X) 1p1pa(X)) 4+ MO G (x)To(X).
n? n?
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Results

Early Results:

> (Conjectured) deterministic equivalent: as n,p, T — oo with o(¢) polynomial
Wij iid. EW;;] =0, EW}] = Tk

k2
Qy < Qy

where

_ -1
[} I
Q~ (Tl—i—é X+’YT)
1

-1
n
§= —trdy > I
T (T1+6 X+7T)
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Results

Early Results:

> (Conjectured) deterministic equivalent: as n,p, T — oo with o(t) polynomial,
Wij iid. E[Wi;] =0, BW}] = T2,

Qy & Qy
where
: -1
Q~ (T1+6‘1’X+’YIT)
1

—1
n
P I
(T1+5 x+7T)

§ = —tr
T

We also denote

L trfbeZ

=1+ )7
L+y5tr®xQ?
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Results

Early Results:
> Training performance:

1 += [n ! =
. 2T
EQ(X,7)<—>’7 T Q’Y T(1+5)2(I)X+[T er’l’.
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Results

Early Results:

> Training performance:

31 1= [n &’ =
Eo(X,r) 7 =1 Qy | =——=5Px + Ir| Q4.

T T (1+6)2

> Testing performance:

1 ot 2
POk 5 Qr

. o n
EU((X7T‘;I77‘)H ?1_"_

with
bx;=FE EU(WX)TU(W;%)} .

In particular, for o(t) =t, ®x,; = ©2X T2, and, for o(t) = 2,

2
Oy s = "% (o(XTE) +20(X) 1p1] 0 () + MU(X)TU(Q:«).
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Test on MNIST data
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Figure: MSE Train and Test Performance for o(t) = t and o (t) = 2, as a function of -, for
2-class MNIST data (zeros, ones), n = 512, T = 512, p = 784.
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Figure: MSE Train and Test Performance for o(t) = t and o (t) = 2, as a function of -, for
2-class MNIST data (zeros, ones), n = 512, T' = 512, p = 784.
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Next Investigations

Interpretations and Improvements:
> General formulas for ®x, ®x

» On-line optimization of v, o(:), n?
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Next Investigations

Interpretations and Improvements:
> General formulas for ®x, ®x

» On-line optimization of v, o(:), n?

Generalizations:
> Multi-layer ELM?
> Optimize layers vs. number of neurons?
» Connection to auto-encoders?

> Introduction of non-linearity to more involved structures (ESN, deep nets?).
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Outline

Neural Networks: Linear Echo-State Neural Networks
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Problem Statement

Echo-state Neural Networks (ESN)
Neural Net with n nodes, states z; € R™, defined recursively through
w41 = 0 (W +mugy1 +neey1)

where
> W fixed (often random) connectivity matrix
> m input to network connectivity (also fixed)

> &¢ in-network noise (ensures stability)

= We take here o(z) = z.

e U, U, U S
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ESN Performance

Training and Testing tasks
From input u € RT and expected output r € RT,
» Given r, train the ESN by setting network to sink link

= (XX 1Xr ,T>n
Tl XXTX)hr ,T<n

with X = [z1,...,27] € R"*T (so that ||r — X Tw|| minimized).
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Training and Testing tasks
From input u € RT and expected output r € RT,
» Given r, train the ESN by setting network to sink link

= (XX 1Xr ,T>n
Tl XXTX)hr ,T<n

with X = [z1,...,27] € R"*T (so that ||r — X Tw|| minimized).

» For unknown # € RT and input @ € ]RT test the ESN by setting
g = XTw.

Training Performance

2 1 ~
S Y
n(u,r) = 7l w ’YIE%’YTT QT

with Q = (%XTX +~I7)~1, random matrix resolvent.
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ESN Performance

Training and Testing tasks
From input u € RT and expected output r € RT,
» Given r, train the ESN by setting network to sink link

= (XX 1Xr ,T>n
Tl XXTX)hr ,T<n

with X = [z1,...,27] € R"*T (so that ||r — X Tw|| minimized).
» For unknown # € RT and input @ € ]RT test the ESN by setting
g = XTw.

Training Performance

Ep(u,r) T HerTwH2 =E£%7%TTQ~W7'~
with Q = (%XTX +~I7)~1, random matrix resolvent.
Testing Performance

E,(u,r;a,7) = % Hf — XﬂuH2

1
= lim — |||

2 T3TvA
— —7' X' XQ~r
27 7 @
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Training Performance

Theorem (Training MSE for fixed 1)

Asn,T — oo, n/T —c< 1,
1 —1
Eyu,r) ¢ Zr7 <IT+R+—UT{m (WHTR- 1W9m} . ) r.
e

where U;j = u;—j and R, R, solution to

1 _ T

R=c{=tr (S;_; R~ }
{" ( ’ ) i,j=1

. 1

R= > Tt (J9Ir +R)™h) S,

g=—o0

with [J9]i; = 8i4q,5 and Sq =3 450 wht(-ot (W’H’q )T
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Training Performance

Theorem (Training MSE for fixed 1)

Asn,T — oo, n/T —c< 1,
1 —1
Eyu,r) ¢ Zr7 <IT+R+—UT{m (WHTR- 1W9m} . ) r.
e

where U;j = u;—j and R, R, solution to

R=c {%tr (Sifj’/i*1> }jjzl
o0

R= > %tr (JU(I7 +R)™') Sq.

g=—00

with [J9);; = 8i4q; and Sq = 3 s WHHEOT (Whta )T,
— When ¢ =0,

1T T Tg—1yyi -
En(u,r)HTr (IT+ —U {m (WHTs, Wm} e 0 r.

> Note that columns of U are delayed versions of w.
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Testing Performance

Theorem (Testing MSE for fixed W)
Asn,T — oo, n/T = c< 1,
? 1
+ ?TTQQQT

N 1 N
Ey(u,r;0,7) < | =—=ATQA(bc<1Ir + R) 'r — —F
7]( ) H’I]QX/T ( <14iT ) ﬁ
1 -
+ ot Gecalr +R)HATO S0+ 6] QA(bccrir +R)"r

where A= MU, A= MU, M =[m,Wm,...,WT=1m], and G, G, solution to

_. gt sl -1y
gfc{ntr (SimsR7! [S0+ 6] R )}m:l

- <1

Gg= > T (J9Ir +R)"'GUr + R)™1) Sq.

g=—00
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Testing Performance

Theorem (Testing MSE for fixed W)
Asn,T — oo, n/T = c< 1,

1 1 ? 1
Ey(u,rya,7) < HWTATQA((SC<1IT +R) "t — ﬁf + ?TTQQQT

1 -
+ 772—T7~T(5c<11T +R)"1ATQ [so + g] QA(SecrIr +R) 11

where A= MU, A= MU, M =[m,Wm,...,WT=1m], and G, G, solution to

_J1 - -1y
gfc{ntr (SimsR7! [S0+ 6] R )}ijzl
- <1
Gg= > T (J9Ir +R)"'GUr + R)™1) Sq.
g=—00
— When ¢ =0,
1 1 1 ? 1 2
0 PSS LT 2 T\~ oL LT AT, 2 T\~
Ey,(u,r;a,7) <> ’\/TA (n SO+AA> Ar ﬁr +Tr A (17 SOJrAA) Ar.

(So = Zkzo wk (Wk)T)
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ESN Performance for Random Haar W

> Letting W = oZ with Z orthogonal and orthogonally invariant,

En(u,r)H(l—C)—r (1 + = UTDU>717»

Ey(u,r;4,7) <>

T 1 -t 1
UTbu (IT + —QUTDU) A
n VT

+ LI T(I + 1UTDU)71 ! T(I + 1UTDU>72
— =T — r— —=r — T
1—cT R T R

where
= g Twi
D_{m(W)S Wm}’]o

D= {m (WiTSg 1WJm}T] 1OT '
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ESN Performance for Random Haar W

> Letting W = oZ with Z orthogonal and orthogonally invariant,

En(uvr)ﬁ(l—C)*r (I + = UTDU>717~

Ey(u,r;4,7) <>

T 1 -t 1
UTbu (IT + —QUTDU) A
n VT

+ LI T(I + 1UTDU)71 ! T(I + 1UTDU>72
— =T — r— —=r — T
1—cT R T R

where
DE{mT(Wi) Sy 1ij} o
1=
To1 T—-1,7-1
D= {m (WiTSg Wﬂm} .
4,j=0
> If m independent of W, D diagonal,

Di; <> (1 — 02)02(i71).
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Multimemory Connectivity

Analysis suggests taking W = diag(W1,..., W), W; = 0;Z;, Z; € R™ *™ Haar,

so that
k 520=1)
j=16i0;

-
ijl Cj(l_ajz) !

D;; <

—_—
% — MC(T; W)
0

----Mc(r; wih)

-© - MC(r; W)

- 8- Mo(r; wih)

1072
1073 E
LN
10—4 L E‘I | 1
10 20 30
T

Figure: Memory curve (MC) for W = diag(W1, Wa, Ws), W; = 0;Z;, Z; € R"3*"j Haar
distributed, o1 = .99, n1/n = .01, 02 = .9, na/n = .1, and o3 = .5, ng/n = .89. The
matrices W are defined by W;r = a';,Z,iJr, with Z;r € R™*™ Haar distributed.

i
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Multimemory Connectivity

10! JLIL L 1 O 1 B o M M R

NMSE
Ll ol ol

—@— Haar W, o0 = .99
—O— Haar W, o0 = .9
—+— Haar W, 0 = .5
E Multimemory W

1l 1l Lo T B S W B

10~4 1073 102 10—t 10° 10t

2
n

Figure: Mackey Glass one-step ahead task, W (multimemory) versus Wl+ = .9921+,
Wy =925, Wit = 52}, n =400, T =T = 800.
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Example: Mackey-Glass Model, random matrix convergence

n=200,T =T = 400 n =400, T = T = 800

T T T T T T T T T T T T T T 1T T T T T T T T T T T T T T T 1T
Test

10°

NMSE

10~3

Monte Carlo Monte Carlo

Th. (fixed W) g Th. (fixed W)
s Th. (limit) = Th. (limit)
2 -
10—6 AT il il e vl vl e
10=% 1073 1072 10! 10° 10t 10=% 1073 1072 10! 10° 10!
2 2
n n

Figure: Mackey Glass one-step ahead task, W multimemory, n = 200, T' = T = 400 (left) and
n =400, T = T = 800 (right).
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Robustness to outliers

1072
3 T \\\\\\‘ \\\\\\‘ 1 T 070

Monte Carlo

Th. (limit)

NMSE

Figure: Mackey-Glass one-step ahead task with 1% or 10% impulsive A/(0, .01) noise pollution in
test data inputs, W Haar with 0 = .9, n = 400, T = T = 1000.
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Robustness to outliers

At

Output (7;2 = 1075)

Output (optimal n2)

Figure: Realization of a 1% N/(0, .01)-noisy Mackey-Glass sequence versus network output, W
Haar with o = .9, n = 400, T = T' = 1000.
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Non-symmetric versus symmetric W

T T T
100 H ——— - Wigner W

— —— - Haar W F

w
v
= _
=
1o-10 L 1 o L 1 o
1074 1072 10° 1074 1072 10°
n? n?
Figure: Training (left) and testing (right) performance of a T-delay task for = € {1,...,4} for

Haar versus Wigner W, ¢ = .9 and n = 200, T' = T = 400.
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Outline

Random Matrices and Robust Estimation
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Context

Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:

103 /113



Context

Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:
> If 21 ~ N(0,Cn), ML estimator for Cp is sample covariance matrix (SCM)

1 n
Cn=— g T
n “

i=1
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> If 21 ~ N(0,Cn), ML estimator for Cp is sample covariance matrix (SCM)

1 n
Cn = - Zmle
i=1
> [Huber'67] If 21 ~ (1 —¢)N(0,Cn)+eG, G unknown, robust estimator (n > N)

N 1< 14
On == Zmax {Zl, 1*?1} z;x] for some 41,02 > 0.
iz NZiCn @i
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Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:
> If 21 ~ N(0,Cn), ML estimator for Cp is sample covariance matrix (SCM)

1 n
S
™=
> [Huber'67] If 21 ~ (1 —¢)N(0,Cn)+eG, G unknown, robust estimator (n > N)

02
Zmax {Zl, } z;x] for some 41,02 > 0.

7:1:*C'N x;

> [Maronna’76] If z; elliptical (and n > N), ML estimator for Cy given by

= 1 * A—1 * . .
E u | —z;Cy ®; | x;z; for some non-increasing u.
“ N
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Context

Baseline scenario: z1,...,z, € CV (or RN) iid. with E[z1] =0, E[z12}] = Cn:
> If 21 ~ N(0,Cn), ML estimator for Cp is sample covariance matrix (SCM)

1 n
S
™=
> [Huber'67] If 21 ~ (1 —¢)N(0,Cn)+eG, G unknown, robust estimator (n > N)

. l
Cn Zmax Zl, 72 z;x] for some 41,02 > 0.
= 7:1:*0

> [Maronna’76] If z; elliptical (and n > N), ML estimator for Cy given by

n
Cny = — g u (—x CA mz> z;x; for some non-increasing u.
n

> [Pascal’'l3; Chen’11] If N > n, x; elliptical or with outliers, shrinkage extensions

On(p) = (1= p) e D 2
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Context

Results only known for N fixed and n — oo:

> not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such Cy in the regime

N,n — oo, N/n — c € (0,00).

» Math interest:

> limiting eigenvalue distribution of C'y .
> limiting values and fluctuations of functionals f(Cn)

» Application interest:
> comparison between SCM and robust estimators
> performance of robust/non-robust estimation methods
> improvement thereof (by proper parametrization)
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Model Description

Definition (Maronna's Estimator)

For x1,...,xn € CN with n > N, C‘N is the solution (upon existence and
uniqueness) of

1 1
Cn = - Zu (Nm:CElzz) iy
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Model Description

Definition (Maronna's Estimator)
For x1,...,xn € CN with n > N, C‘N is the solution (upon existence and
uniqueness) of

where w : [0,00) — (0, 00) is
> non-increasing

» such that ¢(z) £ 2zu(x) increasing of supremum ¢oo with

1< ¢oo <c™ 1, c€(0,1).
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Recent Theoretical Results

For various models of the z;'s,

> First order convergence:

for -5

for some tractable random matrices Sy .

a.s, 0
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Recent Theoretical Results

For various models of the z;'s,

> First order convergence:

[ex - 5] 250

for some tractable random matrices S'N.
> Second order results:
Nl-¢ (a*C’ﬁ,b - a*é}“\,b) 250
allowing transfer of CLT results.

> Applications:
PP
> improved robust covariance matrix estimation
> improved robust tests / estimators

> specific examples in statistics at large, array processing, statistical finance, etc.
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(Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)

For ©; = \/T;w;, T; impulsive (random or not), w; unitarily invariant, ||w;|| = N

’

with, for some v related to u,

n

. 1 .
Sy & -~ E v(TiYN)Tix]
i=1

and N unique solution of

772 Yv(Tiv)

1+ eyv(mny)
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(Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)

For ©; = \/T,w;, T; impulsive (random or not), w; unitarily invariant, ||w;|| = N,

for -

with, for some v related to u,

. 1<
Sy = -~ > o(miyn)wiey
i=1

and N unique solution of

772 (i)

1+ eyv(mny)

Corollaries
. Cn Sy £ X alcwn
> Spectral measure: 'U’N —pY > 0as. (uy = n pIY 5M(X))
> Local convergence: max;<;<n Pw‘(éN) _ >\i(5‘1\7)\ as g

» Norm boundedness: limsupy [|Cn| < oo

— Bounded spectrum (unlike SCM!)
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Large dimensional behavior

| - - - Eigenvalues of C'N |

AusuaQg

1.5

0.5

Eigenvalues

diag(I125, 31125, 101250), 73 ~ I'(.5,2) i.id.

Figure: n = 2500, N = 500, C'n
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Large dimensional behavior

I I I I
- Eigenvalues of éN

- Eigenvalues of S'N

Density

0 0.5 1 1.5 2

Eigenvalues

Figure: n = 2500, N = 500, CN = diag(1125, 3[125, 101250), Ti ~ F(.5, 2) ii.d.
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Large dimensional behavior

T T T T
- Eigenvalues of éN

- Eigenvalues of SN

Approx. Density

Density

Eigenvalues

Figure: n = 2500, N = 500, CN = diag(1125, 3[125, 10[250), Ti ~ F(.5, 2) iid.
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Outlier Data
Theorem (Outlier Rejection)
Observation set
X = [xlv e T(1—epy)ns @ly - oy a’Enn]

where x; ~ CN(0,Cy) and a1, ...,ac,n € CN deterministic outliers. Then,

where

(1—en)n Enm

S'Név(’yN)% Z zizy + — Z (vin) aja;

i=1

with yn and a1 n,...,Qe,n,n Unique positive solutions to

n -1
1 (1 —&)v(vn) &
—trC - 2 CN + — i) aia;
TN <1 +cv(yn) N Z (i)

-1
enm

1, (1_5)U('YN .
oy =—a; | —————Cn + E (ajn)aj aj, 1=1,...,exn.
YPTNTY L1+ eo(yw) Lt i) 403 ’ "
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Outlier Data

» Fore,n =1,

—1 n—1 —1

L

Outlier rejection relies on %ai‘C;,lal s L
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Outlier Data

» Fore,n=1,

n—1

SN:U<%>%§$#U:+ (v( 11_((1:) aiCy ) +o(1)) araj

1

Outlier rejection relies on %a;‘cglal s L
» For a; ~CN(0,Dy), en — € >0,

1 (1—en)n enmn
SN:v(fyn); 2; zix] + v (an) Zala
i=

N 14 cv(yn)n 1+ cv(an

_ —1
an = Dy (MCN " %DN) ,
1+ cv(yn)¥n 1+ cv(an)an

N

-1
= e (SO oy o el )
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Outlier Data

» Fore,n=1,
. )\ 1= -1 _

Outlier rejection relies on %a;‘cglal s L
» For a; ~CN(0,Dy), en — € >0,

1 (1—epn)n enn
S = n)— 7 n T
N =v(Vn) - ; ziz; +v(a Za ay
1 n n -t
= Loy (Lm0l g | sren) )
N 14 cv(yn)n 14 cv(an)an
1 1- n n -1
an = “tr Dy (MCN " &DN) ,
N 14 cv(vn)n 1+ cv(an)on
For e, — 0,
_ (I1—ep)n Enn
5 o~ (1) w1 )1 ¥
SN:U(I_C o ; xixi—'—ﬁ;l} . Nt DNC a;a;

Outlier rejection relies on %tr DNC;[1 s 1
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Outlier Data

Deterministic equivalent eigenvalue distribution

10

T I I I

—--- L (I7en)n o 0% (Clean Data) k

Eigenvalues

Figure: Limiting eigenvalue distributions. [C’N]ij = .9”7“, Dy = 1IN, e = .05.
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Outlier Data

Deterministic equivalent eigenvalue distribution

Figure: Limiting eigenvalue distributions. [Cn]i; = 9li=il DNy = 1IN, &

T T T

—--- L (ITen)n o 0% (Clean Data)

—— % X X* or per-input normalized

Eigenvalues

0.5

= .05.
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Outlier Data

T I I I

10 — _——_— 1 l—en)n

- 1 5 (17em)™ oo ¥ (Clean Data)
c \
0 Iy —— %XX* or per-input normalized
£ Iy N -
2 | —CnN
s L1
K 81
© 1
g 1
=
5 |
> I
S |
.20 61
)
° |
15 I
Q 1
2 !

|
= a4t
(7
° !
= |
2 |
c
£ 1
£ |
[} 2
2
j9 1
o 1

I

|

0
0

Eigenvalues

Figure: Limiting eigenvalue distributions. [C’N]ij = .9”7“, Dy = 1IN, e = .05.

111 /113



Other Results and Perspectives

Short Term Objectives:

> Robust statistics.

% Joint mean and covariance robust estimation
@ Study of robust regression (preliminary works exist already using strikingly different
approaches)
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Other Results and Perspectives

Short Term Objectives:

v

Robust statistics.
% Joint mean and covariance robust estimation
@ Study of robust regression (preliminary works exist already using strikingly different
approaches)
> Kernel methods.
v Subspace spectral clustering (dramatically different case of f'(7) = 0)
% Spectral clustering with outer product kernel f(rTy)
Semi-supervised learning, kernel approaches.
Support vector machines (SVM).

» Community detection.

v/ Complete study of eigenvector contents in adjacency/mpdularity methods.
Q Study of Bethe Hessian approach.
Q Analysis of non-necessarily spectral approaches (wavelet approaches).

v

Neural Networks.
» Analysis of non-linear extreme learning machines
@ non-linear echo-state

» Signal processing on graphs, further graph inference, etc.
Q@ Making graph methods random.
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The End

Thank you.
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