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Context and Taskforce

General theme:

Understand and improve machine learning methods in the large dimensional regime

Collaborators:

Hafiz TIOMOKO ALI (PhD student)

Community detection on graphs

Florent BENAYCH-GEORGES (Professor)

Kernel Spectral Clustering

Xiaoyi MAI (Intern)

Semi-supervised learning

Zhenyu LIAO (Intern)

Support vector machines

Gilles WAINRIB (Assistant Professor)

Cosme LOUART (Intern)

Neural Networks
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Context

Baseline scenario: x1, . . . , xn ∈ CN (or RN ) i.i.d. with E[x1] = 0, E[x1x∗1] = CN :

I If x1 ∼ N (0, CN ), ML estimator for CN is the sample covariance matrix (SCM)

ĈN =
1

n

n∑
i=1

xix
∗
i .

I If n→∞, then, strong law of large numbers

ĈN
a.s.−→ CN .

or equivalently, in spectral norm∥∥∥ĈN − CN∥∥∥ a.s.−→ 0.

Random Matrix Regime

I No longer valid if N,n→∞ with N/n→ c ∈ (0,∞),∥∥∥ĈN − CN∥∥∥ 6→ 0.

I For practical N,n with N ' n, leads to dramatically wrong conclusions

I Even for n = 100×N .
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The Large Dimensional Fallacies

Setting: xi ∈ CN i.i.d., x1 ∼ CN (0, IN )

I assume N = N(n) such that N/n→ c > 1

I then, joint point-wise convergence

max
1≤i,j≤N

∣∣∣∣[ĈN − IN]ij
∣∣∣∣ = max

1≤i,j≤N

∣∣∣∣ 1nXj,·X∗i,· − δij

∣∣∣∣ a.s.−→ 0.

I however, eigenvalue mismatch

0 = λ1(ĈN ) = . . . = λN−n(ĈN ) ≤ λN−n+1(ĈN ) ≤ . . . ≤ λN (ĈN )

1 = λ1(IN ) = . . . = λN−n(IN ) = λN−n+1(ĈN ) = . . . = λN (IN )

⇒ no convergence in spectral norm.
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1 = λ1(IN ) = . . . = λN−n(IN ) = λN−n+1(ĈN ) = . . . = λN (IN )
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The Marc̆enko–Pastur law
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Figure: Histogram of the eigenvalues of ĈN for N = 500, n = 2000, CN = IN .
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The Marc̆enko–Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) µN of Hermitian matrix AN ∈ CN×N is

µN =
1

N

N∑
i=1

δλi(AN ).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
XN ∈ CN×n with i.i.d. zero mean, unit variance entries.
As N,n→∞ with N/n→ c ∈ (0,∞), e.s.d. µN of 1

n
XNX

∗
N satisfies

µN
a.s.−→ µc

weakly, where

I µc({0}) = max{0, 1− c−1}
I on (0,∞), µc has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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The Marc̆enko–Pastur law
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Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞N/n.
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Spiked models

Let XN with i.i.d. (0,1) entries, P a rank-K matrix with K finite as N,n→∞. In
either of these scenarios:

ĈN = (IN + P )
1
2

1

n
XNX

∗
N (IN + P )

1
2

ĈN =
1

n
(XN + P )(XN + P )∗

ĈN =
1

n
XNX

∗
N + P

we have µN
a.s.−→ µc but some eigenvalues can escape the support!
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Spiked models

Two fundamental properties (assume here ĈN = (IN + P )
1
2 1
n
XNX

∗
N (IN + P )

1
2 ):

I Phase transition phenomenon: for ω1 > . . . > ωK ≥ 0 eigenvalues of P ,

λi(ĈN )
a.s.−→

{
(1 +

√
c)2, ωi <

√
c

1 + ωi + c 1+ωi
ωi

, ωi ≥
√
c

I Eigenvector angle: for u1, . . . , uK eigenvectors of P and û1, . . . , ûN of ĈN ,

|û∗i ui|2
a.s.−→

 0, ωi <
√
c

1−cw−2
i

1+cω−1
i

, ωi ≥
√
c
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Wigner’s semi-circle law and Tao’s full circle law

Other classical examples.

I If XN ∈ CN×N Hermitian with i.i.d. entries of mean 0, variance 1/N , then
(almost surely) µN → µ where µ has density f the semi-circle law

f(x) =
1

2π

√
(4− x2)+.

I If XN ∈ CN×N has with i.i.d. 0 mean, variance 1/N entries, then asymptotically
its complex eigenvalues distribute uniformly on the complex unit circle, i.e.
µN → µ with density

f(z) =
1

π
δ|z|≤1.

13 / 113



Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Circular law
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Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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System Setting

Assume n-node undirected graph G, with
I “intrinsic” average connectivity q1, . . . , qn ∼ µ i.i.d.

I k classes C1, . . . , Ck independent of {qi} of (large) sizes n1, . . . , nk, with
preferential attachment Cab between Ca and Cb

I induces edge probability for node i ∈ Ca, j ∈ Cb,

P (i ∼ j) = qiqjCab.

I adjacency matrix A with Aij ∼ Bernoulli(qiqjCab).
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System Setting

Objective:
Understand and improve performance of spectral community detection methods:

I based on adjacency A or modularity A− ddT

dT1n
matrices (adapted to dense nets)

I based on Bethe Hessian (r2 − 1)In − rA+D (adapted to sparse nets!).

0 spikes

⇓ Eigenvectors ⇓
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System Setting

E
ig

en
v.

1
E

ig
en

v.
2

⇓ p-dimensional representation ⇓

Eigenvector 1

E
ig

en
ve

ct
or

2

⇓
EM or k-means clustering.
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Limitations of Adjacency/Modularity Approach

Scenario: 3 classes with µ bi-modal (e.g., µ = 3
4
δ0.1 + 1

4
δ0.5)

→ Leading eigenvectors of A (or modularity A− ddT

dT1n
) biased by qi distribution.

→ Similar behavior for Bethe Hessian.

(Modularity) (Bethe Hessian)
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Regularized Modularity Approach

Connectivity Model: P (i ∼ j) = qiqjCab for i ∈ Ca, j ∈ Cb.

Dense Regime Assumptions: Non trivial regime when, as n→∞,

Cab = 1 +
Mab√
n
, Mab = O(1).

⇒ Community information is weak but highly REDUNDANT!

Considered Matrix:
For α ∈ [0, 1], (and with D = diag(A1n) = diag(d) the degree matrix)

Lα = n2α− 1
2D−α

[
A−

ddT

dT1n

]
D−α.

Our results in a nutshell:

I we find optimal αopt having best phase transition.

I we find consistent estimator α̂opt from A alone.

I we claim optimal eigenvector regularization Dα−1u, u eigenvector of Lα.
⇒ Never proposed before!
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
For each α ∈ [0, 1], as n→∞, ‖Lα − L̃α‖ → 0 almost surely, where

Lα = n2α−1D−α
[
A−

ddT

dT1n

]
D−α

L̃α =
1

m2α
µ

[
1
√
n
D−αq XD−αq + UΛUT

]
with Dq = diag({qi}), mµ =

∫
tµ(dt), X zero-mean random matrix,

U =
[
D1−α
q

J√
n

1
nmµ

D−αq X1n
]
, rank k + 1

Λ =

[
(Ik − 1kc

T)M(Ik − c1T
k) −1k

1T
k 0

]
and J = [j1, . . . , jk], ja = [0, . . . , 0, 1T

na
, 0, . . . , 0]T ∈ Rn canonical vector of class Ca.

Consequences:

I isolated eigenvalues beyond phase transition ↔ λ(M) >“spectrum edge”
⇒ optimal choice αopt of α from study of noise spectrum.

I eigenvectors correlated to D1−α
q J

⇒ Natural regularization by Dα−1J!
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Eigenvalue Spectrum

−6 −4 −2 0 2 4 6

−Sα Sα

Sα

spikes

Eigenvalues of m2
µL1

Limiting law

Figure: Eigenvalues of m2
µL1, K = 3, n = 2000, c1 = 0.3, c2 = 0.3, c3 = 0.4,

µ = 1
2 δq1 + 1

2 δq2 , q1 = 0.4, q2 = 0.9, M defined by Mii = 12, Mij = −4, i 6= j.
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Phase Transition

Theorem (Phase Transition)
For α ∈ [0, 1], isolated eigenvalue λi(Lα) if |λi(M̄)| > τα, M̄ = (D(c)− ccT)M ,

τα = lim
x↓Sα+

−
1

eα2 (x)
, phase transition threshold

with [Sα−, S
α
+] limiting eigenvalue support of m2α

µ Lα and eα2 (x) (|x| > Sα+) solution of

eα1 (x) =

∫
q1−2α

−x− q1−2αeα1 (x) + q2−2αeα2 (x)
µ(dq)

eα2 (x) =

∫
q2−2α

−x− q1−2αeα1 (x) + q2−2αeα2 (x)
µ(dq).

In this case, − 1
eα2 (λi(m2α

µ Lα))
= λi(M̄).

Worst-case clustering for λi(M̄) = minα τα.
I Optimal α = αopt:

αopt = argminα∈[0,1] {τα} .

I From maxi

∣∣∣∣ di√
dT1n

− qi
∣∣∣∣ a.s.−→ 0, we obtain consistent estimator α̂opt of αopt.
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Simulated Performance Results (2 masses of qi)

(Modularity) (Bethe Hessian)

(Algo with α = 1) (Algo with αopt)

Figure: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3, µ = 3
4 δq1 + 1

4 δq2 ,

q1 = 0.1, q2 = 0.5, c1 = c2 = 1
4 , c3 = 1

2 , M = 100I3.
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Simulated Performance Results (2 masses for qi)
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Figure: Largest eigenvalue λ of m2
µLα as a function of the largest eigenvalue ` of

(D(c)− ccT)M , for µ = 3
4 δq1 + 1

4 δq2 with q1 = 0.1 and q2 = 0.5, for

α ∈ {0, 1
4 ,

1
2 ,

3
4 , 1, αopt} (indicated below the graph). Here, αopt = 0.07. Circles indicate

phase transition. Beyond phase transition, ` = −1/eα2 (λ).
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Simulated Performance Results (2 masses for qi)
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Figure: Overlap performance for n = 3000, K = 3, ci = 1
3 , µ = 3

4 δq1 + 1
4 δq2 with q1 = 0.1

and q2 = 0.5, M = ∆I3, for ∆ ∈ [5, 50]. Here αopt = 0.07.
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Simulated Performance Results (2 masses for qi)
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Figure: Overlap performance for n = 3000, K = 3, µ = 3
4 δq1 + 1

4 δq2 with q1 = 0.1 and

q2 ∈ [0.1, 0.9], M = 10(2I3 − 131T
3), ci = 1

3 .
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Simulated Performance Results (2 masses for qi)
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Figure: Evolution of αopt for µ = 3
4 δq1 + 1

4 δq2 with q1 = 0.1, q2 ∈ [0.1, 0.9],

M = 10(2I3 − 131T
3), ci = 1

3 .
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Simulated Performance Results (“sparse” power law for qi)
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Figure: Largest eigenvalue λ of m2
µLα as a function of the largest eigenvalue ` of

(D(c)− ccT)M , for µ a power law with exponent 3 and support [0.05, 0.3], for
α ∈ {0, 1

4 ,
1
2 ,

3
4 , 1, αopt} (indicated below the graph). Here, αopt = 0.28. Circles indicate

phase transition. Beyond phase transition, ` = −1/eα2 (λ).
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Simulated Performance Results (“sparse” power law for qi)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

∆

O
ve

rl
a

p

α = 0

α = 0.5

α = 1

α = αopt

Bethe Hessian

Phase transition

Figure: Overlap performance for n = 3000, K = 3, ci = 1
3 , µ a power law with exponent 3 and

support [0.05, 0.3], M = ∆I3, for ∆ ∈ [10, 150]. Here αopt = 0.28.
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Theoretical Performance

Analysis of eigenvectors reveals:

I eigenvectors are “noisy staircase vectors”

I conjectured Gaussian fluctuations of eigenvector entries

I for qi = q0 (homogeneous case), same variance for all entries in same class

I in non-homogeneous case, we can compute “average variance per class”
⇒ Heuristic asymptotic performance upper-bound using EM.
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Theoretical Performance Results (uniform distribution for qi)
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Figure: Theoretical probability of correct recovery for n = 2000, K = 2, c1 = 0.6, c2 = 0.4, µ
uniformly distributed in [0.2, 0.8], M = ∆I2, for ∆ ∈ [0, 20].
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Figure: Probability of correct recovery for n = 2000, K = 2, c1 = 0.6, c2 = 0.4, µ uniformly
distributed in [0.2, 0.8], M = ∆I2, for ∆ ∈ [0, 20].
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Results on Benchmark Graphs

Graph (n, K) α = 0 α = 1
2

α = 1 α = αopt (value) BH

Polbooks (105, 3) 0 .743 0.757 0.214 0 .743 (0) 0.757
Adjnoun (112, 2) 0.571 0.714 0.000 0.571 (0) 0.661
Karate (34, 2) 0.176 0 .941 0.353 0.176 (0) 1.000
Dolphins (62, 2) 0.968 0.968 0.387 0.968 (0.07) 0 .935
Polblogs (1221, 2) 0.897 0.035 0.040 0.897 (0) 0.304
Football (115, 12) 0.858 0 .905 0 .905 0 .905 (0.16) 0.924

Table: Overlap performance on benchmark graphs.
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Some Takeaway messages

Main findings:

I Degree heterogeneity breaks community structures in eigenvectors.
⇒ Compensation by D−1 normalization of eigenvectors.

I Classical debate over “best normalization” of adjacency (or modularity) matrix A
not trivial to solve.
⇒ With heterogeneous degrees, we found a good on-line method.

I Simulations support good performances even for “rather sparse” settings.

But strong limitations:

I Key assumption: Cab = 1 + Mab√
n

.

⇒ Everything collapses if different regime.

I Simulations on small networks in fact give ridiculous arbitrary results.
I When is sparse sparse and dense dense?

I in theory, di = O(log(n)) is dense...
I in practice, assuming dense regime, eigenvalues smear beyond support edges in critical

scenarios.
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Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs
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Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks
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Kernel Spectral Clustering

Problem Statement

I Dataset x1, . . . , xn ∈ Rp
I Objective: “cluster” data in k similarity classes S1, . . . ,Sk.

I Typical metric to optimize:

(RatioCut) argminS1∪...∪Sk={1,...,n}

k∑
i=1

∑
j∈Si
j̄ /∈Si

κ(xj , xj̄)

|Si|

for some similarity kernel κ(x, y) ≥ 0 (large if x similar to y).

I Can be shown equivalent to

(RatioCut) argminM∈M trMT(D −K)M

where M⊂ Rn×k ∩
{
M ; Mij ∈ {0, |Sj |−

1
2 }
}

(in particular, MTM = Ik) and

K = {κ(xi, xj)}ni,j=1, Dii =
n∑
j=1

Kij .

I But integer problem! Usually NP-complete.
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Kernel Spectral Clustering

Towards kernel spectral clustering

I Kernel spectral clustering: discrete-to-continuous relaxations of such metrics

(RatioCut) argminM, MTM=IK
trMT(D −K)M

i.e., eigenvector problem:
1. find eigenvectors of smallest eigenvalues
2. retrieve classes from eigenvector components

I Refinements:
I working on K, D −K, In −D−1K, In −D−

1
2KD−

1
2 , etc.

I several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.
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Kernel Spectral Clustering

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data.
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Methodology and objectives

Current state:

I Algorithms derived from ad-hoc procedures (e.g., relaxation).

I Little understanding of performance, even for Gaussian mixtures!

I Let alone when both p and n are large (BigData setting)

Objectives and Roadmap:

I Develop mathematical analysis framework for BigData kernel spectral clustering
(p, n→∞)

I Understand:
1. Phase transition effects (i.e., when is clustering possible?)
2. Content of each eigenvector
3. Influence of kernel function
4. Performance comparison of clustering algorithms

Methodology:

I Use statistical assumptions (Gaussian mixture)

I Benefit from doubly-infinite independence and random matrix tools
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Model and Assumptions

Gaussian mixture model:
I x1, . . . , xn ∈ Rp,
I k classes C1, . . . , Ck,
I x1, . . . , xn1 ∈ C1, . . . , xn−nk+1, . . . , xn ∈ Ck,
I Ca = {x | x ∼ N (µa, Ca)}.

Then, for xi ∈ Ca, with wi ∼ N(0, Ca),

xi = µa + wi.

Assumption (Convergence Rate)
As n→∞,

1. Data scaling: p
n
→ c0 ∈ (0,∞),

2. Class scaling: na
n
→ ca ∈ (0, 1),

3. Mean scaling: with µ◦ ,
∑k
a=1

na
n
µa and µ◦a , µa − µ◦, then

‖µ◦a‖ = O(1)

4. Covariance scaling: with C◦ ,
∑k
a=1

na
n
Ca and C◦a , Ca − C◦, then

‖Ca‖ = O(1),
1
√
p

trC◦a = O(1).
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Model and Assumptions

Kernel Matrix:

I Kernel matrix of interest:

K =

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

for some sufficiently smooth nonnegative f .

I We study the normalized Laplacian:

L = nD−
1
2KD−

1
2

with D = diag(K1n).
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Model and Assumptions

Difficulty: L is a very intractable random matrix

I non-linear f

I non-trivial dependence between entries of L

Strategy:

1. Find random equivalent L̂ (i.e., ‖L− L̂‖ a.s.−→ 0 as n, p→∞) based on:
I concentration: Kij → constant as n, p→∞ (for all i 6= j)
I Taylor expansion around limit point

2. Apply spiked random matrix approach to study:
I existence of isolated eigenvalues in L̂: phase transition
I eigenvector projections on canonical class-basis
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Random Matrix Equivalent

Results on K:
I Key Remark: Under our assumptions, uniformly on i, j ∈ {1, . . . , n},

1

p
‖xi − xj‖2

a.s.−→ τ

for some common limit τ .

I large dimensional approximation for K:

K = f(τ)1n1T
n︸ ︷︷ ︸

O‖·‖(n)

+
√
nA1︸ ︷︷ ︸

low rank, O‖·‖(
√
n)

+ A2︸︷︷︸
informative terms, O‖·‖(1)

I difficult to handle (3 orders to manipulate!)

Observation: Spectrum of L:

I Dominant eigenvalue n with eigenvector D
1
2 1n

I All other eigenvalues of order O(1).

⇒ Naturally leads to study:
I Projected normalized Laplacian:

L′ = nD−
1
2KD−

1
2 − n

D
1
2 1n1T

nD
1
2

1T
nD1n

.

I Dominant (normalized) eigenvector D
1
2 1n√

1T
nD1n

.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J,Φ, ψ

]
∈ Rn×(2k+4)

B =


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
t

Ik − c1T
k 0k×k 0k×1(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

 ∈ R(2k+4)×(2k+4)

B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.

Important Notations:
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5f ′(τ)

8f(τ)
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f ′′(τ)
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f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.

Important Notations:
1√
p
J = [j1, . . . , jk] ∈ Rn×k, ja canonical vector of class Ca.
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p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.

Important Notations:
M = [µ◦1, . . . , µ

◦
k] ∈ Rn×k, µ◦a = µa −

∑k
b=1

nb
n
µb.
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L̂′ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J,Φ, ψ

]
∈ Rn×(2k+4)

B =


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
t

Ik − c1T
k 0k×k 0k×1(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

 ∈ R(2k+4)×(2k+4)

B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n

f(τ)α(τ)

2f ′(τ)
1k1T

k ∈ Rk×k.

Important Notations:

t =
[

1√
p

trC◦1 , . . . ,
1√
p

trC◦k

]
∈ Rk, C◦a = Ca −

∑k
b=1

nb
n
Cb.

46 / 113



Random Matrix Equivalent

Theorem (Random Matrix Equivalent)
As n, p→∞, in operator norm,

∥∥∥L′ − L̂′∥∥∥ a.s.−→ 0, where

L̂′ = −2
f ′(τ)

f(τ)

[
1

p
PWTWP + UBUT

]
+ α(τ)In

and τ = 2
p

trC◦, W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

U =

[
1
√
p
J,Φ, ψ

]
∈ Rn×(2k+4)

B =


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
t

Ik − c1T
k 0k×k 0k×1(

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ)

− f ′′(τ)
2f ′(τ)

 ∈ R(2k+4)×(2k+4)

B11 = MTM +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT −

f ′′(τ)

f ′(τ)
T +

p

n
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Important Notations:

T =
{

1
p

trC◦aC
◦
b

}k
a,b=1

∈ Rk×k, C◦a = Ca −
∑k
b=1

nb
n
Cb.
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Random Matrix Equivalent

Some consequences:

I L̂′ is a spiked model: UBUT seen as low rank perturbation of 1
p
PWTWP

I If f ′(τ) = 0,
I L′ asymptotically deterministic!
I only t and T can be discriminated upon

I If f ′′(τ) = 0, (e.g., f(x) = x) T unused

I If 5f ′(τ)
8f(τ)

=
f ′′(τ)
2f ′(τ)

, t (seemingly) unused
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Isolated eigenvalues: Gaussian inputs

0 1 2 3 4

Eigenvalues of L′

0 1 2 3 4

Eigenvalues of L̂′

Figure: Eigenvalues of L′ and L̂′, k = 3, p = 2048, n = 512, c1 = c2 = 1/4, c3 = 1/2,
[µa]j = 4δaj , Ca = (1 + 2(a− 1)/

√
p)Ip, f(x) = exp(−x/2).
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Isolated Eigenvalues

Two-step Strategy:

1. Study limiting eigenvalue distribution (and its support S) of 1
p
PWTWP

2. Solve, for λ 6∈ S,

det

(
1

p
PWTWP + UBUT − λIn

)
= 0.

Equivalent to solving smaller dimensional:

det
(
BUTQλU

)
= 0

with Qλ = ( 1
p
PWTWP − λIn)−1.
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Isolated Eigenvalues

Lemma (Deterministic Equivalent)
For z ∈ C away from eigenvalues of 1

p
PWTWP and

Qz =

(
1

p
PWTWP − zIn

)−1

, Q̃z =

(
1

p
WPWT − zIp

)−1

.

Then, as n→∞,

Qz ↔ Q̄z , c0 diag {ga(z)1na}
k
a=1 −

{(
1

z
+ c0

ga(z)gb(z)∑k
i=1 cigi(z)

)
1na1T

nb

n

}k
a,b=1

Q̃z ↔ ¯̃Qz ,

(
−z
[
Ip +

k∑
a=1

caga(z)Ca

])−1

where (g1, . . . , gk) are the unique (Stieltjes transforms) solutions to

ga(z) =

(
−zc0

[
1 +

1

p
trCa

¯̃Qz

])−1

and An ↔ Bn means 1
n

trDnAn − 1
n

trDnBn
a.s.−→ 0 and dT

1,n(An −Bn)d2,n
a.s.−→ 0

for deterministic bounded Dn, di,n.
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Isolated Eigenvalues

Theorem ((Useful) isolated eigenvalues)
Define the k × k matrix

Gz = h(τ, z)Ik +Dτ,zΓz

where

Dτ,z = −zh(τ, z)MT ¯̃QzM − h(τ, z)
f ′′(τ)

f ′(τ)
T +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)
ttT

Γz = diag {caga(z)}ka=1 −
{
caga(z)cbgb(z)∑k

i=1 cigi(z)

}k
a,b=1

h(τ, z) = 1 +

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

) k∑
a=1

caga(z)
2

p
trC2

a.

If ρ 6∈ S is such that h(τ, ρ) 6= 0 and Gρ has a zero eigenvalue of multiplicity mρ, then

−2
f(τ)
f ′(τ)

(L− α(τ)In) has mρ isolated eigenvalues converging to ρ.
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Isolated eigenvalues: MNIST

0 10 20 30 40 50
0

5 · 10−2

0.1

0.15

0.2

Eigenvalues of L′

Figure: Eigenvalues of L′ (red) and (equivalent Gaussian model) L̂′ (white), MNIST data,
p = 784, n = 192.
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Figure: Eigenvalues of L′ (red) and (equivalent Gaussian model) L̂′ (white), MNIST data,
p = 784, n = 192.
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Eigenvectors

Strategy:

I Study “easy” eigenvector D
1
2 1n

I Independently, for each spike eigenvalue, study eigenvector projections on basis J

Dominant Eigenvector:

Proposition (Eigenvector D
1
2 1n)

We have

D
1
2 1n√

1T
nD1n

=
1n√
n

+
1

n
√
c0

f ′(τ)

2f(τ)

{ta1na}
k
a=1 + diag

{√
2

p
tr (C2

a)1na

}k
a=1

ϕ

+ o(n−1)

with ϕ ∼ N (0, In).

Remark:

I D
1
2 1n block-wise constant + noise

I only information about trC◦a !
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Eigenvectors

Isolated eigenvectors

Theorem (Eigenvector projections)
Let ρ isolated eigenvalue and Πρ its associated subspace in L, then

1

p
JTΠ̂ρJ = −h(τ, ρ)ΓρΞρ + o(1)

where J = [j1, . . . , jk] canonical class-basis, and

Ξρ =

mρ∑
i=1

(Vr,ρ)i(Vl,ρ)T
i

(Vl,ρ)T
i G
′
ρ(Vr,ρ)i

with Vr,ρ, Vl,ρ ∈ Ck×mρ right and left eigenvectors of Gρ associated with eig. zero.

Remark: mρ = 1 case

I [JTuuTJ ]aa = |jT
au|2: eigenvector “level” in class Ca

I E = 1− 1
n

tr (diag({1/ci})JTuuTJ): total noise energy

I Eigenvector levels given by eigenvectors of Gρ = h(τ, ρ)Ik +Dτ,ρΓρ.
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Eigenvectors

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data (red), versus Gaussian

equivalent model (black), and theoretical findings (blue).
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Case C1 = . . . = Ck = Ik

Corollary: let (`,Υ) isolated eigenpair of Ip +M diag({ci})MT,

I Condition for Existence: |`− 1| > √c0 (classical spike random matrix result)

I Eigenvalues: isolated eigenvalue ρ of − f(τ)
2f ′(τ)

(L− α(τ)In)

ρ =
`

c0
+

`

`− 1

I Eigenvectors:

1

n
JTΠρJ =

(
1

`
−

c0

`(`− 1)2

)
diag({ci})MTΥρΥT

ρM diag({ci}) + o(1).

Remark: Does not depend on f !
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Case M = 0, Ca = (1 + γa/
√
p)Ip

Corollary: let γ = [γ1, . . . , γk]T and

` =

(
5f ′(τ)

8f(τ)
−
f ′′(τ)

2f ′(τ)

)(
2 +

k∑
a=1

caγ
2
a

)
.

Then,

I Condition for Existence: |`− 1| > √c0 (classical spike random matrix result)

I Eigenvalues: isolated eigenvalue ρ of − f(τ)
2f ′(τ)

(L− α(τ)In)

ρ =
`

c0
+

`

`− 1

I Eigenvectors:

1

n
JTΠρJ =

1− c0
(`−1)2

2 +
∑k
a=1 caγ

2
a

diag({ci})γγT diag({ci}) + o(1).

Remark:

I only ONE isolated eigenvalue

I eigenvector alignment directly linked to γa’s.
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Further Results

Beyond Class-wise means:

I per-class fluctuations

I per-class cross-eigenvector fluctuations

Consequences:

I see M isolated eigenvectors as n points in RM

I clustering x1, . . . , xn ⇔ clustering n points in RM

Method:

I per-class fluctuations: for each a, estimate

tr
(

diag(ja)Π̂ρ
)

⇒ for Π̂ρ = uρu∗ρ, gives access to tr (diag(ja)uρu∗ρ) = u∗ρ diag(ja)uρ

I cross-eigenvector fluctuations: for each a and (ρ1, ρ2), estimate

1

p
JTΠ̂ρ1 diag(ja)Π̂ρ2J

⇒ for Π̂ρ = uρu∗ρ, gives access to (u∗ρ1 diag(ja)uρ2 )× ( 1√
p
JTuρ1 )( 1√

p
u∗ρ2J)
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Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of D−
1
2KD−

1
2 for MNIST data (red), versus Gaussian

equivalent model (black), and theoretical findings (blue).
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Theoretical Findings versus MNIST
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Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Some Takeaway messages

Surprising findings:

I “Good kernel functions” f need not be decreasing.

I Dominant parameters in large dimensions are first three derivatives at τ .

I More importantly, clustering possible despite ‖xi − xj‖2 → τ , i.e., no first order
data difference
⇒ Breaks original intuitions and problem layout!

Validity of the Results:

I Needs a concentration of measure assumption: ‖xi − xj‖2 → τ .

I Invalid for heavy-tailed distributions (where ‖xi‖ = ‖√τizi‖ needs not converge).

I Suprising fit between theory and practice: are large images essentially Gaussian
vectors?

I kernels extract primarily first order properties (means, covariances)
I with no fancy image processing (rotations, scale invariance), may be strong enough

features.
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Problem Statement

Context: Similar to clustering:

I Classify x1, . . . , xn ∈ Rp in k classes, but with labelled and unlabelled data.

I Problem statement: (di = [K1n]i)

F = argminF∈Rn×k

k∑
a=1

∑
i,j

Kij(Fiad
α−1
i − Fjadα−1

j )2

such that Fia = δ{xi∈Ca}, for all labelled xi.

I Solution: denoting F (u) ∈ Rnu×k, F (l) ∈ Rnl×k the restriction to
unlabelled/labelled data,

F (u) =
(
Inu −D

−α
(u)

K(u,u)D
α−1
(u)

)−1
D−α

(u)
K(u,l)D

α−1
(l)

F (l)

where we naturally decompose

K =

[
K(l,l) K(l,u)

K(u,l) K(u,u)

]
D =

[
D(l) 0

0 D(u)

]
= diag {K1n} .
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Problem Statement

Using F (u):

I From F (u), classification algorithm:

Classify xi in Ca ⇔ Fia = max
b∈{1,...,k}

{Fib} .

Objectives: For xi ∼ N (µa, Ca), and as n, p→∞, (nu, nl →∞ or nu →∞,
nl = O(1))

I Tractable approximation (in norm) for the vectors [F(u)]·,a, a = 1, . . . , k

I Joint asymptotic behavior of [F(u)]i,·
⇒ From which classification probability is retrieved.

I Understanding the impact of α
⇒ Finding optimal α choice online?
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MNIST Data Example
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Figure: Vectors [F (u)]·,a, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Comments

Not at all what we expect!:

I Intuitively, [F (u)]i,a should be close to 1 if xi ∈ Ca or 0 if xi /∈ Ca (from cost
function Kij(Fi,a − Fj,a)2)

I Here, strong class-wise biases

I But, more surprisingly, it still works very well !

We need to understand why...
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MNIST Data Example
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Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: We assume nl/n→ cl ∈ (0, 1) (“numerous” labelled data setting)

I Recall that we aim at characterizing

F (u) =
(
Inu −D

−α
(u)

K(u,u)D
α−1
(u)

)−1
D−α

(u)
K(u,l)D

α−1
(l)

F (l)

I A priori difficulty linked to resolvent of involved random matrix!
I Painstaking product of complex matrices.

I Using Taylor expansion of K as n, p→∞, we get

K(u,u) = f(τ)1nu1T
nu

+O‖·‖(n
− 1

2 )

D(u) = nf(τ)Inu +O(n
1
2 )

and similarly for K(u,l), D(l).

I So that

(
Inu −D

−α
(u)

K(u,u)D
α−1
(u)

)−1
=

(
Inu −

1nu1T
nu

n
+O‖·‖(n

− 1
2 )

)−1

which can be easily Taylor expanded!
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Main Results (so far)

Results:

I In the first order,

F
(u)
·,a = C

nl,a

n

[
v + α

ta1nu√
n

]
+ O(n−1)︸ ︷︷ ︸

Information is here!

where v = O(1) random vector (entry-wise) and ta = 1√
p

trC◦a .

I Many consequences:

I Random non-informative bias linked to v
I Strong Impact of nl,a!

⇒ All nl,a must be equal OR F (l) need be scaled!
I Additional per-class bias αta1nu : no information here
⇒ Forces the choice

α = 0 +
β
√
n
.

I Relevant information hidden in smaller order terms!
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Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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p = 784, nl/n = 1/16, Gaussian kernel.
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Problem Statement

Context: All data are labelled, we classify the next incoming one:

I Classify x1, . . . , xn ∈ Rp in k = 2 classes.

I For kernel K(x, y) = φ(x)Tφ(y), φ(x) ∈ Rq , find hyperplane directed by (w, b) to
“isolate each class”.

(w, b) = argminw∈Rq−1 ‖w‖2 +
1

n

n∑
i=1

c(xi;w, b)

for a certain cost function c(x;w, b).

Solutions:

I Classical SVM:
c(xi;w, b) = ı{yi(wTφ(xi)+b)≥1}

with yi = ±1 depending on class.
⇒ Solved by quadratic programming methods.
⇒ Analysis requires joint RMT + convex optimization tools (very interesting but
left for later...).

I LS SVM:
c(xi;w, b) = γe2i ≡ (yi − wTφ(xi)− b)2.

⇒ Explict solution (but not sparse!).
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LS SVM

For new datum x, decision based on (sign of)

g(x) = αTK(·, x) + b

where α ∈ Rn and b are solution to[
0 1T

n
1n K + n

γ
In

] [
b
α

]
=

[
0
y

]
with y = [yi]

n
i=1, γ some parameter to set.

Objectives:

I Study behavior of g(x)

I For x ∈ Ca, determine probability of success.

I Optimize the parameter γ and the kernel K.
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Early Results

As before, xi ∼ N (µa, Ca), a = 1, . . . , k, with identical growth conditions, here for
k = 2.

Results: As n, p→∞,
I in the first order

g(x) =
n2 − n1

n
+

0
√
p

+
G(x)

p︸ ︷︷ ︸
Relevant terms here!

I G(x) proportional to γ
I G(x) asymptotically Gaussian with in particular

E[G(x)]→
{
−c1M , x ∈ C1
c2M , x ∈ C2

M =
2c1c2

γ

[
−2f ′(τ)‖µ2 − µ1‖2 + f ′′(τ)(t2 − t1)2 +

4f ′′(τ)

p
tr (C1 − C2)2

]
.

Consequences:
I Strong class-size bias
⇒ Proper threshold must depend on n2 − n1.

I Natural cancellation of O(n−
1
2 ) terms.

⇒ Similar effect as observed in (properly normalized) kernel spectral clustering.
I Choice of γ asymptotically irrelevant.
I Need to choose f ′(τ) < 0 and f ′′(τ) > 0 (not the case for clustering or SSL!)
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Theory and simulations of g(x)
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Figure: Values of g(x) for Gaussian xi’s (different means and covariances) versus limiting
theoretical distribution, n = 512, p = 1024.
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Problem Statement

General plan for the study of neural networks:
I Objective is to study performance of neural networks:

I linear or not (linear is easy but not interesting, non-linear is hard)
I from shallow to deep
I recurrent or not (dynamic systems, stability considerations)
I back-propagated or not (LS regression versus gradient descent approaches)

I Starting point: simple networks
I Extreme learning machines: single layer, randomly connected input, LS regressed

output.
I Echo-state networks: single interconnected layer, randomly connected input, LS

regressed output.
I Deeper structures: back-propagation of error.
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Extreme Learning Machines

Context: for a learning period T

I input vectors x1, . . . , xT ∈ Rp, output scalars (or binary values) r1, . . . , rT ∈ R
I n-neuron layer, randomly connected input W ∈ Rn×p

I ridge-regressed output ω ∈ Rn

I non-linear activation function σ.

81 / 113



Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n, p, T →∞

I Training MSE:

Eγ(X, r) =
1

T
‖r − ωTΣ‖2

with

Σ = [σ(Wx1), . . . , σ(WxT )]

ω=
1

T
Σ

(
1

T
ΣTΣ + γIT

)−1

r.

I Testing MSE: upon new pair (x̂, r̂),

Êγ(X, r; x̂, r̂) = ‖r̂ − ωTσ(Wx̂)‖2.

I Optimize over γ.
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Technical Aspects

Training MSE:

I Training MSE given by

Eγ(X, r) = γ2 1

T
rTQ̃2

γr

Q̃γ =

(
1

T
ΣTΣ + γIT

)−2

.

I Testing MSE given by

Êγ(X, r; x̂, r̂) =

∣∣∣∣r̂ − 1

T
σ(Wx̂)TΣQ̃γr

∣∣∣∣2

I Requires first a deterministic equivalent ¯̃Qγ for Q̃γ with non-linear σ(·).

I Then deterministic approximation of 1
T
σ(Wa)TΣQ̃γb for deterministic vectors

a, b.

83 / 113



Technical Aspects

Training MSE:

I Training MSE given by

Eγ(X, r) = γ2 1

T
rTQ̃2

γr

Q̃γ =

(
1

T
ΣTΣ + γIT

)−2

.

I Testing MSE given by

Êγ(X, r; x̂, r̂) =

∣∣∣∣r̂ − 1

T
σ(Wx̂)TΣQ̃γr

∣∣∣∣2

I Requires first a deterministic equivalent ¯̃Qγ for Q̃γ with non-linear σ(·).

I Then deterministic approximation of 1
T
σ(Wa)TΣQ̃γb for deterministic vectors

a, b.

83 / 113



Technical Aspects

Training MSE:

I Training MSE given by

Eγ(X, r) = γ2 1

T
rTQ̃2

γr

Q̃γ =

(
1

T
ΣTΣ + γIT

)−2

.

I Testing MSE given by
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I Then deterministic approximation of 1
T
σ(Wa)TΣQ̃γb for deterministic vectors

a, b.
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Technical Aspects

Bai–Silverstein approach:

I Assume ¯̃Qγ = (F + γIT )−1 for some deterministic F .

I For A deterministic, we manipulate 1
T

trAQ̃γ − 1
T

trA ¯̃Qγ , to obtain

1

T
trAQ̃γ −

1

T
trA ¯̃Qγ =

1

T
trAQ̃γ

(
F −

1

T
ΣTΣ

)
¯̃Qγ

=
1

T
trAQ̃γF

¯̃Qγ −
1

T

n∑
i=1

1

T
Σi,·

¯̃QγAQ̃γΣT
i,·

=
1

T
trAQ̃γF

¯̃Qγ −
1

T

n∑
i=1

1
T

Σi,·
¯̃QγAQ̃γ,−iΣT

i,·

1 + 1
T

Σi,·Q̃γ,−iΣT
i,·

where Q̃γ,−i = ( 1
T

ΣTΣ− 1
T

ΣTi,·Σi,· + γIT )−1.

I Here Σi,· = σ(Wi,·X) independent of Q̃γ,−i
−→ reasoning broken on co-resolvent! (lucky that we need Q̃γ and not Qγ)
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Technical Aspects

(Conjectured) updated trace lemma:

Lemma
For A deterministic and σ(t) polynomial, Wij i.i.d. E[Wij ] = 0, E[Wk

ij ] = mk
nk/2

,

1

T
Σi,·AΣT

i,· −
1

T
tr ΦXA

a.s.−→ 0

with

ΦX = E

[
1

n
σ(WX)Tσ(WX)

]
.

For instance,

I for σ(t) = t,

ΦX =
m2

n
XTX.

I for σ(t) = t2,

ΦX =
m2

2

n2

(
σ(XTX) + 2σ(X)T1p1T

pσ(X)
)

+
m4 − 3m2

2

n2
σ(X)Tσ(X).
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Results

Early Results:

I (Conjectured) deterministic equivalent: as n, p, T →∞ with σ(t) polynomial,
Wij i.i.d. E[Wij ] = 0, E[Wk

ij ] = mk
nk/2

,

Q̃γ ↔ ¯̃Qγ

where

¯̃Qγ =

(
n

T

1

1 + δ
ΦX + γIT

)−1

δ =
1

T
tr ΦX

(
n

T

1

1 + δ
ΦX + γIT

)−1

We also denote

δ′ = (1 + δ)
1
T

tr ΦX
¯̃Q2
γ

1 + γ 1
T

tr ΦX
¯̃Q2
γ

.
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Results

Early Results:

I Training performance:

Eα(X, r)↔ γ2 1

T
rT ¯̃Qγ

[
n

T

δ′

(1 + δ)2
ΦX + IT

]
¯̃Qγr.

I Testing performance:

Êα(X, r; x̂, r̂)↔
∣∣∣∣r̂ − n

T

1

1 + δ
ΦT
X,x̂

¯̃Qγr

∣∣∣∣2
with

ΦX,x̂ = E

[
1

n
σ(WX)Tσ(Wx̂)

]
.

In particular, for σ(t) = t, ΦX,x̂ = m2
n
XTx̂, and, for σ(t) = t2,

ΦX,x̂ =
m2

2
n2

(
σ(XTx̂) + 2σ(X)T1p1T

pσ(x̂)
)

+
m4−3m2

2
n2 σ(X)Tσ(x̂).
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Test on MNIST data

10−4 10−3 10−2 10−1 100 101 102 103 104
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100

101

σ(t) = t

γ

M
S

E

Theory Train

Simu Train

Simu Test

Figure: MSE Train and Test Performance for σ(t) = t and σ(t) = t2, as a function of γ, for
2-class MNIST data (zeros, ones), n = 512, T = 512, p = 784.

88 / 113



Test on MNIST data

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

σ(t) = t2

σ(t) = t

γ

M
S

E

Theory Train

Simu Train

Simu Test

Figure: MSE Train and Test Performance for σ(t) = t and σ(t) = t2, as a function of γ, for
2-class MNIST data (zeros, ones), n = 512, T = 512, p = 784.

88 / 113



Next Investigations

Interpretations and Improvements:

I General formulas for ΦX , ΦX,x̂
I On-line optimization of γ, σ(·), n?

Generalizations:

I Multi-layer ELM?

I Optimize layers vs. number of neurons?

I Connection to auto-encoders?

I Introduction of non-linearity to more involved structures (ESN, deep nets?).
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Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation
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Problem Statement

Echo-state Neural Networks (ESN)
Neural Net with n nodes, states xt ∈ Rn, defined recursively through

xt+1 = σ (Wxt +mut+1 + ηεt+1)

where

I W fixed (often random) connectivity matrix

I m input to network connectivity (also fixed)

I εt in-network noise (ensures stability)

⇒ We take here σ(x) = x.
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ESN Performance

Training and Testing tasks
From input u ∈ RT and expected output r ∈ RT ,

I Given r, train the ESN by setting network to sink link

ω =

{
(XXT)−1Xr , T > n
X(XTX)−1r , T ≤ n

with X = [x1, . . . , xT ] ∈ Rn×T (so that ‖r −XTω‖ minimized).

I For unknown r̂ ∈ RT̂ and input û ∈ RT̂ , test the ESN by setting

ŷ = X̂Tω.

Training Performance

Eη(u, r) ≡
1

T

∥∥∥r −XTω
∥∥∥2

= lim
γ↓0

γ
1

T
rTQ̃γr.

with Q̃γ ≡ ( 1
T
XTX + γIT )−1, random matrix resolvent.

Testing Performance

Êη(u, r; û, r̂) =
1

T̂

∥∥∥r̂ − X̂Tω
∥∥∥2

= lim
γ↓0

1

T̂
‖r̂‖2 +

1

T 2T̂
rTQ̃γX

TX̂X̂TXQ̃γr −
2

T T̂
r̂TX̂TXQ̃γr
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Training Performance

Theorem (Training MSE for fixed W )
As n, T →∞, n/T → c < 1,

Eη(u, r)↔
1

T
rT

(
IT +R+

1

η2
UT
{
mT(W i)TR̃−1W jm

}T−1

i,j=0
U

)−1

r.

where Uij = ui−j and R, R̃, solution to

R = c

{
1

n
tr
(
Si−jR̃−1

)}T
i,j=1

R̃ =
∞∑

q=−∞

1

T
tr
(
Jq(IT +R)−1

)
Sq .

with [Jq ]ij ≡ δi+q,j and Sq ≡
∑
k≥0 W

k+(−q)+ (Wk+q+ )T.

−→ When c = 0,

Eη(u, r)↔
1

T
rT

(
IT +

1

η2
UT
{
mT(W i)TS−1

0 W jm
}T−1

i,j=0
U

)−1

r.

I Note that columns of U are delayed versions of ut.
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Testing Performance

Theorem (Testing MSE for fixed W )
As n, T →∞, n/T → c < 1,

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
√
T
ÂTQA(δc<1IT +R)−1r −

1√
T̂
r̂

∥∥∥∥∥
2

+
1

T
rTQ̃GQ̃r

+
1

η2T
rT(δc<1IT +R)−1ATQ

[
S0 + G̃

]
QA(δc<1IT +R)−1r

where A = MU , Â = M̂Û , M = [m,Wm, . . . ,WT−1m], and G, G̃, solution to

G = c

{
1

n
tr
(
Si−jR̃−1

[
S0 + G̃

]
R̃−1

)}T
i,j=1

G̃ =
∞∑

q=−∞

1

T
tr
(
Jq(IT +R)−1G(IT +R)−1

)
Sq .

−→ When c = 0,

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1
√
T
ÂT
(
η2S0 +AAT

)−1
Ar −

1√
T̂
r̂

∥∥∥∥∥
2

+
1

T
rTAT

(
η2S0 +AAT

)−2
Ar.

(S0 =
∑
k≥0W

k(Wk)T).
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ESN Performance for Random Haar W

I Letting W = σZ with Z orthogonal and orthogonally invariant,

Eη(u, r)↔ (1− c)
1

T
rT

(
IT +

1

η2
UTDU

)−1

r

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
√
T
ÛTD̂U

(
IT +

1

η2
UTDU

)−1

r −
1√
T̂
r̂

∥∥∥∥∥
2

+
1

1− c
1

T
rT

(
IT +

1

η2
UTDU

)−1

r −
1

T
rT

(
IT +

1

η2
UTDU

)−2

r

where

D ≡
{
mT(W i)TS−1

0 W jm
}T−1

i,j=0

D̂ ≡
{
mT(W i)TS−1

0 W jm
}T̂−1,T−1

i,j=0
.

I If m independent of W , D diagonal,

Dii ↔ (1− σ2)σ2(i−1).
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I If m independent of W , D diagonal,

Dii ↔ (1− σ2)σ2(i−1).
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Multimemory Connectivity

Analysis suggests taking W = diag(W1, . . . ,Wk), Wj = σjZj , Zj ∈ Rnj×nj Haar,
so that

Dii ↔
∑k
j=1 cjσ

2(i−1)
j∑k

j=1 cj(1− σ2
j )−1

.

10 20 30
10−4

10−3

10−2

10−1

100

τ

MC(τ;W )

MC(τ;W
+
1 )

MC(τ;W
+
2 )

MC(τ;W
+
3 )

Figure: Memory curve (MC) for W = diag(W1,W2,W3), Wj = σjZj , Zj ∈ Rnj×nj Haar
distributed, σ1 = .99, n1/n = .01, σ2 = .9, n2/n = .1, and σ3 = .5, n3/n = .89. The

matrices W+
i are defined by W+

i = σiZ
+
i , with Z+

i ∈ Rn×n Haar distributed.
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Multimemory Connectivity

10−4 10−3 10−2 10−1 100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

η2

N
M

S
E

Haar W , σ = .99

Haar W , σ = .9

Haar W , σ = .5

Multimemory W

Figure: Mackey Glass one-step ahead task, W (multimemory) versus W+
1 = .99Z+

1 ,

W+
2 = .9Z+

2 , W+
3 = .5Z+

3 , n = 400, T = T̂ = 800.
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Example: Mackey-Glass Model, random matrix convergence

10−4 10−3 10−2 10−1 100 101
10−6

10−3

100
Test

Train

η2

N
M

S
E

n = 200, T = T̂ = 400

Monte Carlo

Th. (fixed W )

Th. (limit)

10−4 10−3 10−2 10−1 100 101

Test

Train

η2

n = 400, T = T̂ = 800

Monte Carlo

Th. (fixed W )

Th. (limit)

Figure: Mackey Glass one-step ahead task, W multimemory, n = 200, T = T̂ = 400 (left) and

n = 400, T = T̂ = 800 (right).
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Robustness to outliers

10−4 10−3 10−2 10−1
0

1

2

3
·10−2

Test

Train
1%

5%

10%

η2

N
M

S
E

Monte Carlo

Th. (limit)

Figure: Mackey-Glass one-step ahead task with 1% or 10% impulsive N (0, .01) noise pollution in

test data inputs, W Haar with σ = .9, n = 400, T = T̂ = 1000.
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Robustness to outliers

ût r̂t Output (optimal η2) Output (η2 = 10−5)

ût r̂t Output (optimal η2) Output (η2 = 10−5)

ût r̂t Output (optimal η2) Output (η2 = 10−5)

Figure: Realization of a 1% N (0, .01)-noisy Mackey-Glass sequence versus network output, W

Haar with σ = .9, n = 400, T = T̂ = 1000.
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Non-symmetric versus symmetric W

10−4 10−2 100
10−10

10−5

100

τ = 1, . . . , 4

η2

N
M

S
E

Wigner W

Haar W

10−4 10−2 100

τ = 1, . . . , 4

η2

Wigner W

Haar W

Figure: Training (left) and testing (right) performance of a τ -delay task for τ ∈ {1, . . . , 4} for

Haar versus Wigner W , σ = .9 and n = 200, T = T̂ = 400.
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Outline

Random Matrices and Machine Learning at CentraleSupélec

Basic Reminders on Random Matrix Theory

Community Detection on Graphs

Kernel Spectral Clustering

Semi-supervised Learning

Support Vector Machines

Neural Networks: Extreme Learning Machines

Neural Networks: Linear Echo-State Neural Networks

Random Matrices and Robust Estimation
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Context

Baseline scenario: x1, . . . , xn ∈ CN (or RN ) i.i.d. with E[x1] = 0, E[x1x∗1] = CN :

I If x1 ∼ N (0, CN ), ML estimator for CN is sample covariance matrix (SCM)

ĈN =
1

n

n∑
i=1

xix
∗
i .

I [Huber’67] If x1 ∼ (1− ε)N (0, CN ) + εG, G unknown, robust estimator (n > N)

ĈN =
1

n

n∑
i=1

max

{
`1,

`2
1
N
x∗i Ĉ

−1
N xi

}
xix
∗
i for some `1, `2 > 0.

I [Maronna’76] If x1 elliptical (and n > N), ML estimator for CN given by

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i for some non-increasing u.

I [Pascal’13; Chen’11] If N > n, x1 elliptical or with outliers, shrinkage extensions

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N
x∗i Ĉ

−1
N (ρ)xi

+ ρIN

ČN (ρ) =
B̌N (ρ)

1
N

tr B̌N (ρ)
, B̌N (ρ) = (1− ρ)

1

n

n∑
i=1

xix
∗
i

1
N
x∗i Č

−1
N (ρ)xi

+ ρIN
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ČN (ρ) =
B̌N (ρ)

1
N

tr B̌N (ρ)
, B̌N (ρ) = (1− ρ)

1

n

n∑
i=1

xix
∗
i

1
N
x∗i Č
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Context

Results only known for N fixed and n→∞:

I not appropriate in settings of interest today (BigData, array processing, MIMO)

We study such ĈN in the regime

N,n→∞, N/n→ c ∈ (0,∞).

I Math interest:
I limiting eigenvalue distribution of ĈN
I limiting values and fluctuations of functionals f(ĈN )

I Application interest:
I comparison between SCM and robust estimators
I performance of robust/non-robust estimation methods
I improvement thereof (by proper parametrization)
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Model Description

Definition (Maronna’s Estimator)
For x1, . . . , xn ∈ CN with n > N , ĈN is the solution (upon existence and
uniqueness) of

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

where u : [0,∞)→ (0,∞) is

I non-increasing

I such that φ(x) , xu(x) increasing of supremum φ∞ with

1 < φ∞ < c−1, c ∈ (0, 1).
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Recent Theoretical Results

For various models of the xi’s,

I First order convergence: ∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

for some tractable random matrices ŜN .

I Second order results:

N1−ε
(
a∗ĈkN b− a

∗ŜkN b
)

a.s.−→ 0

allowing transfer of CLT results.

I Applications:
I improved robust covariance matrix estimation
I improved robust tests / estimators
I specific examples in statistics at large, array processing, statistical finance, etc.
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(Elliptical) scenario

Theorem (Large dimensional behavior, elliptical case)
For xi =

√
τiwi, τi impulsive (random or not), wi unitarily invariant, ‖wi‖ = N ,∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

with, for some v related to u,

ŜN ,
1

n

n∑
i=1

v(τiγN )xix
∗
i

and γN unique solution of

1 =
1

n

n∑
j=1

γv(τiγ)

1 + cγv(τiγ)
.

Corollaries

I Spectral measure: µ
ĈN
N − µŜNN

L−→ 0 a.s. (µXN , 1
n

∑n
i=1 δλi(X))

I Local convergence: max1≤i≤N |λi(ĈN )− λi(ŜN )| a.s.−→ 0.

I Norm boundedness: lim supN ‖ĈN‖ <∞

−→ Bounded spectrum (unlike SCM!)
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Large dimensional behavior
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Figure: n = 2500, N = 500, CN = diag(I125, 3I125, 10I250), τi ∼ Γ(.5, 2) i.i.d.
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Outlier Data

Theorem (Outlier Rejection)
Observation set

X =
[
x1, . . . , x(1−εn)n, a1, . . . , aεnn

]
where xi ∼ CN (0, CN ) and a1, . . . , aεnn ∈ CN deterministic outliers. Then,∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN , v (γN )
1

n

(1−εn)n∑
i=1

xix
∗
i +

1

n

εnn∑
i=1

v (αi,n) aia
∗
i

with γN and α1,n, . . . , αεnn,n unique positive solutions to

γN =
1

N
trCN

(
(1− ε)v(γN )

1 + cv(γN )γN
CN +

1

n

εnn∑
i=1

v (αi,n) aia
∗
i

)−1

αi,n =
1

N
a∗i

 (1− ε)v(γN )

1 + cv(γN )γN
CN +

1

n

εnn∑
j 6=i

v (αj,n) aja
∗
j

−1

ai, i = 1, . . . , εnn.
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Outlier Data

I For εnn = 1,

ŜN = v

(
φ−1(1)

1− c

)
1

n

n−1∑
i=1

xix
∗
i +

(
v

(
φ−1(1)

1− c
1

N
a∗1C

−1
N a1

)
+ o(1)

)
a1a
∗
1

Outlier rejection relies on 1
N
a∗1C

−1
N a1 ≶ 1.

I For ai ∼ CN (0, DN ), εn → ε ≥ 0,

ŜN = v (γn)
1

n

(1−εn)n∑
i=1

xix
∗
i + v (αn)

1

n

εnn∑
i=1

aia
∗
i

γn =
1

N
trCN

(
(1− ε)v(γn)

1 + cv(γn)γn
CN +

εv(αn)

1 + cv(αn)αn
DN

)−1

αn =
1

N
trDN

(
(1− ε)v(γn)

1 + cv(γn)γn
CN +

εv(αn)

1 + cv(αn)αn
DN

)−1

.

For εn → 0,

ŜN = v

(
φ−1(1)

1− c

)
1

n

(1−εn)n∑
i=1

xix
∗
i +

1

n

εnn∑
i=1

v

(
φ−1(1)

1− c
1

N
trDNC

−1
N

)
aia
∗
i

Outlier rejection relies on 1
N

trDNC
−1
N ≶ 1.
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Figure: Limiting eigenvalue distributions. [CN ]ij = .9|i−j|, DN = IN , ε = .05.
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Other Results and Perspectives

Short Term Objectives:

I Robust statistics.
. Joint mean and covariance robust estimation
� Study of robust regression (preliminary works exist already using strikingly different

approaches)

I Kernel methods.
4 Subspace spectral clustering (dramatically different case of f ′(τ) = 0)

. Spectral clustering with outer product kernel f(xTy)

. Semi-supervised learning, kernel approaches.

. Support vector machines (SVM).

I Community detection.
4 Complete study of eigenvector contents in adjacency/mpdularity methods.
� Study of Bethe Hessian approach.
� Analysis of non-necessarily spectral approaches (wavelet approaches).

I Neural Networks.
. Analysis of non-linear extreme learning machines
� non-linear echo-state

I Signal processing on graphs, further graph inference, etc.
� Making graph methods random.
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The End

Thank you.
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